Quiz 20 : Markov Chain Hitting Time Solutions

written by Alvin Wan. alvinwan.com/cs70. Wednesday, November 16, 2016
This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 Hitting Time

1. Courtney is rushing to class. With probability $\frac{1}{4}$ she takes a step in 3 seconds. With probability $\frac{1}{2}$, she takes 2 steps in 3 seconds. Otherwise, she stops to catch her breath for 3 seconds. How long will it take Courtney to walk 3 steps?

Solution: Let $\beta(i)$ be the amount of time it takes for Courtney to climb the stairs given she has climbed i steps.

$$
\begin{aligned}
& \beta(3)=0 \\
& \beta(2)=\frac{1}{4} \beta(2)+\frac{3}{4} \beta(3)+3 \\
& \beta(1)=\frac{1}{4} \beta(1)+\frac{1}{4} \beta(2)+\frac{1}{2} \beta(3)+3 \\
& \beta(0)=\frac{1}{4} \beta(0)+\frac{1}{4} \beta(1)+\frac{1}{2} \beta(2)+3
\end{aligned}
$$

Let us plug this into matrix form.

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -3 / 4 & 3 / 4 & -3 \\
0 & -3 / 4 & 1 / 4 & 1 / 2 & -3 \\
-3 / 4 & 1 / 4 & 1 / 2 & 0 & -3
\end{array}\right]
$$

Plugging into Wolfram Alpha, we get the following.

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 76 / 9 \\
0 & 1 & 0 & 0 & 16 / 3 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

As a result, $\beta(0)=\frac{76}{9}$.
2. Derek is counting his medals; he takes 1 second to place a medal in the "counted" stack. With probability p, he remembers his count. Otherwise, he starts over. How long does it take for him to count n medals? Approximate $1-p$ to be 0 .

Solution: Let $\beta(i)$ denote the expected amount of time it takes for Derek to count the remaining i medals.

$$
\begin{aligned}
& \beta(i)=p(\beta(i-1)+1)+(1-p) \beta(n) \\
& \beta(i)=p \beta(i-1)+(p+(1-p) \beta(n))
\end{aligned}
$$

Let $\alpha=p$ and $\eta=p+(1-p) \beta(n) \approx p$. So,

$$
\beta(i)=p^{i} \beta(0)+\frac{1-\eta^{i-1}}{1-\eta}=\frac{1-\eta^{i-1}}{1-\eta}
$$

We are interested in $\beta(n)$, so plug it in and solve.

$$
\begin{aligned}
\beta(n) & =\frac{1-\eta^{i-1}}{1-\eta} \\
& =\frac{1-p^{i-1}}{1-p}
\end{aligned}
$$

