Quiz 13 : Independence, Bayes Solutions

written by Alvin Wan . alvinwan.com/cs70. Wednesday, October 19, 2016
This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 Independence and Bayes' Rule

1. Construct a sample space and events A, B, and C so that these events are pairwise independent but not mutually independent.

Solution: See Crib 13 for definitions of mutual and pairwise independence if need be. We can construct a sample space $\Omega=\{1,2,3,4\}$. Let $A=\{1,2\}, B=\{2,3\}, C=$ $\{1,3\}$. The probability of $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$ for all pairs. $\operatorname{Pr}(A, B, C)=0$, whereas $\operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C)=\frac{1}{8} \neq 0$.
2. Is it possible to compute $\operatorname{Pr}(B \mid A)$ given $\operatorname{Pr}(A \mid B), \operatorname{Pr}(B)$, and $\operatorname{Pr}(\bar{A} \mid \bar{B})$? If so, compute it.

Solution: Yes.

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})}
$$

Note that $\operatorname{Pr}(A \mid \bar{B})+\operatorname{Pr}(\bar{A} \mid \bar{B})=1$, and $\operatorname{Pr}(B)+\operatorname{Pr}(\bar{B})=1$, so we can solve for $\operatorname{Pr}(A \mid \bar{B})$ and $\operatorname{Pr}(\bar{B})$.

Consider a fair coin c_{1} and a coin c_{2} with bias p. Roll a 6 -sided dice. If you roll 1 or 2 , flip c_{1}. If you roll 3 , flip either c_{1} or c_{2} with probability $\frac{1}{2}$. If you roll 4,5 , or 6 , flip c_{2}.

1. What is the probability that you rolled a 3 , given you see heads?

Solution: Let A be the event you rolled 1 or 2 , let B be the probability you roll a 3 , let C be the probability that you roll a 4,5 , or 6 , and let H be the probability that you roll a heads.

$$
\operatorname{Pr}(B \mid H)=\frac{\operatorname{Pr}(H \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(H \mid A) \operatorname{Pr}(A)+\operatorname{Pr}(H \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(H \mid C) \operatorname{Pr}(C)}
$$

We will first reason about the numerator. We know that the $\operatorname{Pr}(B)=\frac{1}{6}$. Given that we've rolled a 3 , we know that we have $\frac{1}{2}$ probability of getting either the fair coin c_{1} or the biased coin c_{2}. Thus, the probability of heads is

$$
\begin{aligned}
\operatorname{Pr}(H \mid B) & =\operatorname{Pr}\left(H, c_{1}, B\right)+\operatorname{Pr}\left(H, c_{2}, B\right) \\
& =\operatorname{Pr}\left(H \mid c_{1}, B\right) \operatorname{Pr}\left(c_{1} \mid B\right)+\operatorname{Pr}\left(H \mid c_{2}, B\right) \operatorname{Pr}\left(c_{2} \mid B\right) \\
& =\frac{1}{2} \frac{1}{2}+p \frac{1}{2} \\
& =\frac{1}{2}\left(\frac{1}{2}+p\right)
\end{aligned}
$$

This makes the numerator

$$
\operatorname{Pr}(H \mid B) \operatorname{Pr}(B)=\frac{1}{2}\left(\frac{1}{2}+p\right) \frac{1}{6}=\frac{1}{12}\left(\frac{1}{2}+p\right)
$$

We can compute the first term in the denominator. Note that for the event A (where we roll a 1 or 2), we are guaranteed to flip the fair coin. Additionally, there is a $\frac{2}{6}=\frac{1}{3}$ probability of flipping either a 1 or a 2 .

$$
\operatorname{Pr}(H \mid A) \operatorname{Pr}(A)=\frac{1}{2} \frac{1}{3}=\frac{1}{6}
$$

The third term in the denominator is given by the following. Note that the probability of rolling a 4,5 , or 6 is $\frac{3}{6}=\frac{1}{2}$.

$$
\operatorname{Pr}(H \mid C) \operatorname{Pr}(c)=p \frac{1}{2}
$$

We have the denominator is thus the following.

$$
\operatorname{Pr}(H)=\frac{1}{6}+\frac{1}{12}\left(\frac{1}{2}+p\right)+\frac{p}{2}=\frac{14 p+5}{24}
$$

Our final expression is the following.

$$
\begin{aligned}
\operatorname{Pr}(B \mid H) & =\frac{\operatorname{Pr}(H \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(H \mid A) \operatorname{Pr}(A)+\operatorname{Pr}(H \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(H \mid C) \operatorname{Pr}(C)} \\
& =\frac{\frac{1}{12}\left(\frac{1}{2}+p\right)}{\frac{14 p+5}{24}} \\
& =\frac{1+2 p}{5+14 p}
\end{aligned}
$$

2. What is the probability that you rolled 3 or fewer, given you see heads?

Solution: Let X_{1} be the event that we roll 1. Let X_{2} be the probability that we roll a 2. We are currently looking for $\operatorname{Pr}\left(X_{(1,2,3)} \mid H\right)=\operatorname{Pr}\left(X_{1} \mid H\right)+\operatorname{Pr}\left(X_{2} \mid H\right)+\operatorname{Pr}\left(X_{3} \mid H\right)$. We can take $\operatorname{Pr}(H)$ from the previous part, and we know that rolling a $1\left(X_{1}\right)$ will definitely give us a fair coin, with $\frac{1}{2}$ probability of being heads.

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1} \mid H\right) & =\frac{\operatorname{Pr}\left(H \mid X_{1}\right) \operatorname{Pr}\left(X_{1}\right)}{\operatorname{Pr}(H)} \\
& =\frac{\frac{1}{2} \frac{1}{6}}{\frac{14 p+5}{24}} \\
& =\frac{2}{14 p+5}
\end{aligned}
$$

We know that X_{2} will have the same probability, since the probability of rolling a 2 is the same as rolling a 1 . Thus, the final answer is

$$
\begin{aligned}
\operatorname{Pr}\left(X_{(1,2,3)} \mid H\right) & =2 \operatorname{Pr}\left(X_{1} \mid H\right)+\operatorname{Pr}\left(X_{3} \mid H\right) \\
& =\frac{4}{14 p+5}+\frac{1+2 p}{5+14 p} \\
& =\frac{5+2 p}{14 p+5}
\end{aligned}
$$

3. What is the probability that you rolled more than 3 given that you see heads?

Solution: Note that $\operatorname{Pr}\left(X_{1} \mid H\right)+\operatorname{Pr}\left(X_{2} \mid H\right)+\cdots+\operatorname{Pr}\left(X_{6} \mid H\right)=1$, thus $\operatorname{Pr}\left(X_{(1,2,3) \mid H}+\right.$ $\operatorname{Pr}\left(X_{(4,5,6)} \mid H\right)=1$, and we have that $\operatorname{Pr}\left(X_{(4,5,6)}=1-\operatorname{Pr}\left(X_{(1,2,3)} \mid H\right)\right.$. This is simply one minus the answer to part 2.

$$
1-\frac{5+2 p}{14 p+5}=\frac{12 p}{14 p+5}
$$

