Quiz 12: Probability Solutions

written by Alvin Wan. alvinwan.com/cs70. Monday, October 17, 2016
This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 Probability and Conditional Probability

Consider a 5 -card hand from a standard deck of 52 cards.

1. What is the probability that we have exactly 1 ace?

Solution: It is easier to reason about this using counting. We pick an ace and then we pick from the non-Ace cards.

$$
\frac{(4)}{\left(\frac{1}{4}\right)}
$$

Alternatively, we can consider the possibility of picking an Ace $\frac{4}{52}$ and then picking four non-Ace cards, $\frac{48}{51} \frac{47}{50} \frac{46}{49} \frac{45}{48}$. Note that this assumes we pick in this order, so we must divide by the ways to order these cards; there are 5! ways to order 5 cards, so we have

$$
\frac{4 * 48 * 47 * 46 * 45}{52 * 51 * 50 * 49 * 48 * 5!}
$$

2. What is the probability that we have exactly 3 clubs? (Hint: Use counting)

Solution: It is easier to reason about this using counting. We pick our three clubs. Since there are 13, we choose 3 from 13, and since there are $52-13=39$ non-club cards, we pick 2 from 39.

$$
\frac{\binom{13}{3}\binom{39}{2}}{\binom{52}{5}}
$$

3. Given we have three clubs, what is the probability of an ace of clubs?

Solution: In the denominator, we count all ways to pick three clubs, which is the numerator from part 2 .

$$
\binom{13}{3}\binom{39}{2}
$$

In the numerator, we count all ways to pick a 5 -card hand with an ace of clubs. Given that our ace is a club, we only have two more clubs to choose and two non-clubs to choose.

$$
\binom{12}{2}\binom{39}{2}
$$

Thus, our final answer is the following.

$$
\frac{\binom{12}{2}\binom{39}{2}}{\binom{13}{3}\binom{39}{2}}=\frac{3}{13}
$$

4. What is the probability that we have 3 clubs or 1 ace? (Not XOR, Hint: Think about inclusion-exclusion.)

Solution: We need to apply inclusion-exclusion. Recall that this states for two events A and B,

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

We have that A is from part 1 and B is from part 2. All that remains is to compute $\operatorname{Pr}(A \cap B)$ which is the probability of 3 clubs and exactly one ace. We have two cases; either the ace is a club or the ace is not a club. Let C be the event that the ace is a club. By some variant of the law of total probability:

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \cap B \cap C)+\operatorname{Pr}(A \cap B \cap \bar{C})
$$

We now compute both probabilities. Pick the ace of clubs, $\binom{1}{1}$. We pick our two non-ace clubs from 12 non-ace clubs $\binom{12}{2}$. Finally, we pick our non-ace, non-club from $52-4-13+1=36$.

$$
\operatorname{Pr}(A \cap B \cap C)=\frac{\binom{12}{2}\binom{36}{2}}{\binom{52}{5}}
$$

Given that our ace is not a club, we have all three non-Ace clubs to choose $\left(\binom{12}{3}\right)$, not to mention a non-club, non-ace and a non-club ace card. We know there are $52-13-3=36$ non-club, non-ace cards and there are 3 non-club, ace cards. Thus, we have the following.

$$
\operatorname{Pr}(A \cap B \cap \bar{C})=\frac{\binom{12}{3}\binom{36}{1}\binom{3}{1}}{\binom{52}{5}}
$$

Thus, we can combine these to get the following for $\operatorname{Pr}(A \cap B)$.

$$
\frac{\binom{12}{2}\binom{36}{2}}{\binom{52}{5}}+\frac{\binom{12}{3}\binom{36}{1}\binom{3}{1}}{\binom{52}{5}}
$$

We then have our final expression for $\operatorname{Pr}(A \cup B)$.

$$
\frac{\binom{4}{1}\binom{48}{4}}{\binom{52}{5}}+\frac{\binom{13}{3}\binom{39}{2}}{\binom{52}{5}}-\left(\frac{\binom{12}{2}\binom{36}{2}}{\binom{52}{5}}+\frac{\binom{12}{3}\binom{36}{1}\binom{3}{1}}{\binom{52}{5}}\right)
$$

