Quiz 7 Solutions

written by Alvin Wan . alvinwan.com/cs70

Wednesday, September 28, 2016

This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 RSA

1. Prove or Disprove: Given two different public keys, N_{1} and $N_{2}, d=$ $\operatorname{gcd}\left(N_{1}, N_{2}\right)$ cannot be composite.

Solution: Assume for contradiction that d is composite. Since N_{1} and N_{2} are each made of only two primes each, and d is a common factor for both N_{i}, then d is the product of two primes. We now have two cases:
(a) Since d contains two primes and each N_{i} contains exactly two primes, $d=N_{1}$ and $d=N_{2}$. This means $N_{1}=N_{2}$. However, $N_{1} \neq N_{2}$. Contradiction.
(b) $d \neq N_{1}$. However, d is a factor of N_{1}. Since d has two primes and $N_{1} \neq d$, then N_{1} is composed of at least three primes. Contradiction. (Remember, we know that in RSA, N is the product of exactly two primes.)
2. Prove or Disprove There are finitely many polynomials in $\bmod p$ for some prime p. (If true, find an expression for the number of polynomials. If false, prove the opposite.)

Solution: In mod p, there are p possible numbers. By Fermat's Little Theorem $\left(a^{p} \equiv a \bmod p\right)$, we see that the maximum degree for any polynomial is $p-1$. Note that we cannot apply $a^{p-1} \equiv 1 \bmod p$ because a could be 0 . This means that the maximum number of terms is p, where each has p possible coefficients. This makes p^{p} possible polynomials in $\bmod p$.

