Quiz 6 Solutions

written by Alvin Wan . alvinwan.com/cs70

Monday, September 26, 2016

This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 Fermat's Little Theorem

1. Prove that if p is prime, $x^a = x^{a \mod (p-1)} \mod p$.

Solution: Let a = m(p-1)+n, where n = a(mod(p-1)) and $m = \lfloor \frac{a}{p-1} \rfloor$. Plug in a, and we have

$$\begin{aligned} x^{m(p-1)+n} &= x^{(p-1)m} x^n \mod p \\ &= (x^{p-1})^m x^n \end{aligned}$$

By Fermat's Little Theorem, $x^{p-1} \equiv 1 \mod p$. Thus,

$$(x^{p-1})^m x^n = x^n$$
$$= x^{a \pmod{p-1}}$$

2. Solve $2016^{2016^{2016}} \mod 2017$. (Note: 2017 is prime)

Solution: Per the proof in part a, we have

$$2016^{2016^{2016}} \mod 2017 = 2016^{2016^{2016}} \mod 2016 \mod 2017$$
$$= 2016^{0^{2016}} \mod 2016 \mod 2017$$
$$= 1 \mod 2017$$

We can alternatively note that $2016 = -1 \mod 2017$. Since -1 is raised to an even power, the answer is 1 mod 2017.

3. Let p be prime. Is $a^p \equiv a \pmod{p} \implies a^{p-1} \equiv 1 \pmod{p}$ true?

Solution: False

First, note that if p is prime, then we always have the following $a^p \equiv a \pmod{p}$. Second, if a > 0, a is not divisible by p, and p is still prime, then we additionally have that $a^{p-1} = 1 \pmod{p}$.

Although $a^p = a \pmod{p}$ is always true when p is prime, $a^{p-1} \equiv 1 \pmod{p}$ is not. The latter is true only if we also have that p does not divide a, and a > 0.