Quiz 6 Solutions

written by Alvin Wan . alvinwan.com/cs70
Monday, September 26, 2016

This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 Fermat's Little Theorem

1. Prove that if p is prime, $x^{a}=x^{a \bmod (p-1)} \bmod p$.

Solution: Let $a=m(p-1)+n$, where $n=a(\bmod (p-1))$ and $m=\left\lfloor\frac{a}{p-1}\right\rfloor$.
Plug in a, and we have

$$
\begin{aligned}
x^{m(p-1)+n} & =x^{(p-1) m} x^{n} \quad \bmod p \\
& =\left(x^{p-1}\right)^{m} x^{n}
\end{aligned}
$$

By Fermat's Little Theorem, $x^{p-1} \equiv 1 \bmod p$. Thus

$$
\begin{aligned}
\left(x^{p-1}\right)^{m} x^{n} & =x^{n} \\
& =x^{a(\bmod (p-1))}
\end{aligned}
$$

2. Solve $2016^{2016^{2016}} \bmod 2017$. (Note: 2017 is prime)

Solution: Per the proof in part a, we have

$$
\begin{aligned}
2016^{2016^{2016}} \bmod 2017 & =2016^{2016^{2016}} \bmod 2016 \bmod 2017 \\
& =2016^{0^{2016}} \bmod 2016 \bmod 2017 \\
& =1 \bmod 2017
\end{aligned}
$$

We can alternatively note that $2016=-1 \bmod 2017$. Since -1 is raised to an even power, the answer is $1 \bmod 2017$.
3. Let p be prime. Is $a^{p} \equiv a(\bmod p) \Longrightarrow a^{p-1} \equiv 1(\bmod p)$ true?

Solution: False

First, note that if p is prime, then we always have the following $a^{p} \equiv$ $a(\bmod p)$. Second, if $a>0, a$ is not divisible by p, and p is still prime, then we additionally have that $a^{p-1}=1(\bmod p)$.
Although $a^{p}=a(\bmod p)$ is always true when p is prime, $a^{p-1} \equiv 1(\bmod p)$ is not. The latter is true only if we also have that p does not divide a, and $a>0$.

