Quiz 5 Solutions

written by Alvin Wan . alvinwan.com/cs70
Monday, September 12, 2016

This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam.

1 Modular Arithmetic

1. (True or False) The solution to $2 x=3 \bmod 7$ is less than 2 .

Solution: False. $x=\frac{3}{2}$ is not a valid numerical value in $\bmod 7$. Instead, we should take the multiplicative inverse. $2^{-1} \bmod 7=4$, so $x=3\left(2^{-1}\right)=12=5 \bmod 7$.
2. Solve the following system of equations.

$$
\begin{array}{rr}
x-y=5 & \bmod 5 \\
-3 x+2 y=6 & \bmod 5
\end{array}
$$

Solution: $x=y=4$
Solve the system of equations almost normally. First, take mod 5 for all numbers.

$$
\begin{aligned}
x+4 y & =0
\end{aligned} \quad \bmod 5
$$

Plug in x and solve. Remember that to convert a negative n number into a number in $\bmod p$, keep adding p to your negative number n until $0 \leq n<p$. (In the following example, $-6=4 \bmod 5$).

$$
\begin{aligned}
2(-4 y)+2 y & =1 \\
-6 y & =1 \\
4 y & =1
\end{aligned}
$$

Note that at this point, it is not valid to say $y=\frac{1}{4}$, because $\frac{1}{4}$ doesn't exist in $\bmod 5!$. We do have the multiplicative inverse of 4 though, where $4^{-1}=4 \bmod 5$. Thus, we have

$$
\begin{aligned}
4 y & =1 \quad \bmod 5 \\
4 y\left(4^{-1}\right) & =1\left(4^{-1}\right) \quad \bmod 5 \\
y & =1(4) \quad \bmod 5 \\
y & =4
\end{aligned}
$$

Since $x-y=0$, we know $x=y=4 \bmod 5$.
In the above example, you could have plugged in $x=y$ into the second equation to get the same answer. I used $x=-4 y$ to briefly introduce converting negative numbers into numbers in the mod universe. As it turns out $x=-4 y \bmod 5$ is really $x=y \bmod 5$ anyways.
3. Prove that $\forall n \in \mathbb{N},(n-1) \mid-\left(n^{2}+3 n+2\right) \bmod n$. (i.e., $(\mathrm{n}-1)$ divides $\left.-\left(n^{2}+3 n+2\right)\right)$.
Solution: We know $-\left(n^{2}+3 n+2\right)=-(n+1)(n+2)=(-n-1)(n+2)$. Since we're working in $\bmod n$, adding n to a quantity does not change its value. Thus, we can state $(-n-1)+2 n=n-1$. We then have that $-\left(n^{2}+3 n+2\right)=(n-1)(n+2)$. To formally state that $n-1$ indeed divides $-\left(n^{2}+3 n+2\right)$. Since n is an integer, so is $n+2$, so $\exists k \in Z,(n-1) k=-\left(n^{2}+3 n+2\right) \bmod n$.

