Crib 21: Continuous Probability

written by Alvin Wan . alvinwan.com/cs70 . Monday, November 21, 2016
The crib sheet contains cheat-sheet worthy information but is not a substitute for lectures or for reading the notes. It also contains pointers and common mistakes.

1 Tactics

- In continuous probability, all summations are integrals. For example, take the following discrete concepts:
$-E[X]=\sum x P(X=x)$
- PMF: $P(X=k), \mathrm{CDF}: \sum_{k} P(X=k)$

Take the following continuous analogs:

- $E[X]=\int x P(x=x)$
$-\mathrm{PDF}: P(x=k), \mathrm{CDF}=\int P(X=k) d k$
Note that the PDF is a continuous-valued function, whereas the PMF is a function defined only at discrete points.
- Drawing is an important tactic. Take your two random variables, and consider all of their possible combinations of values. Then, draw the regions over which you're interested in.
- For uniformly-distributed random variables, the ratio of the area of your region to the entire region, is the probability of that event. This is true because a uniform distribution has a joint PDF inversely proportional to the entire area.
- For non-uniformly-distributed random variables, integrate the joint PDF $f_{X, Y}(x, y)$ over your region of interest.
- We have the following analogs for discrete v. continuous distributions.
- The binomial distribution handles n independent trials with probability p of success. It answers what is the probability of k successes in n trials?. Likewise, if $n p \leq 1$, we see that the Poisson distribution is a fair approximation of binomial. The Poisson distribution handles an average number of successes λ per unit time. Poisson answers what is the probability of k successes per unit time?
- The geometric distribution handles independent trials with probability p of success. It answers what is the amount of time until the first success?. Again, our limiting distribution has an analog; take the limit of increasingly shorter units of time to get the continuous exponential distribution. Exponential distribution handles again the average number of successes λ per unit time. However, it answers how many units of time until the first success?

2 Notes

- It is important to note that the uniform distribution is defined for both discrete and continuous-valued random variables.
- There are various ways to combine random variables:
- The sum of Poisson random variables $P_{i} \sim \operatorname{Pois}\left(\lambda_{i}\right)$ is another Poisson-distributed random variable with parameter $\sum_{i} \lambda_{i}$.
- The minimum of exponential random variables $E_{i} \sim \operatorname{Expo}\left(\lambda_{i}\right)$ is another exponentially-distributed random variable with parameter $\sum_{i} \lambda_{i}$.
- The sum of Gaussian random variables $N_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ is another Gaussian random variable with parameters $N\left(\sum_{i} \mu_{i}, \sum_{i} \sigma_{i}^{2}\right)$
- Remember to always specify the valid values for your random variable when writing a PDF.

