Crib 21 : Continuous Probability

written by Alvin Wan . alvinwan.com/cs70 . Monday, November 21, 2016

The crib sheet contains cheat-sheet worthy information but is not a substitute for lectures or for reading the notes. It also contains pointers and common mistakes.

1 Tactics

- In continuous probability, all summations are integrals. For example, take the following discrete concepts:
 - $-E[X] = \sum xP(X=x)$
 - PMF: P(X = k), CDF: $\sum_{k} P(X = k)$

Take the following continuous analogs:

- $-E[X] = \int xP(x=x)$
- PDF: P(x = k), CDF = $\int P(X = k)dk$

Note that the PDF is a continuous-valued function, whereas the PMF is a function defined only at discrete points.

- Drawing is an important tactic. Take your two random variables, and consider all of their possible combinations of values. Then, draw the regions over which you're interested in.
 - For uniformly-distributed random variables, the ratio of the area of your region to the entire region, is the probability of that event. This is true because a uniform distribution has a joint PDF inversely proportional to the entire area.
 - For non-uniformly-distributed random variables, integrate the joint PDF $f_{X,Y}(x, y)$ over your region of interest.
- We have the following analogs for discrete v. continuous distributions.

- The **binomial distribution** handles n independent trials with probability p of success. It answers what is the probability of k successes in n trials?. Likewise, if $np \leq 1$, we see that the **Poisson distribution** is a fair approximation of binomial. The Poisson distribution handles an average number of successes λ per unit time. Poisson answers what is the probability of k successes per unit time?
- The geometric distribution handles independent trials with probability p of success. It answers what is the amount of time until the first success? Again, our limiting distribution has an analog; take the limit of increasingly shorter units of time to get the continuous exponential distribution. Exponential distribution handles again the average number of successes λ per unit time. However, it answers how many units of time until the first success?.

2 Notes

- It is important to note that the uniform distribution is defined for both discrete and continuous-valued random variables.
- There are various ways to combine random variables:
 - The sum of Poisson random variables $P_i \sim \text{POIS}(\lambda_i)$ is another Poisson-distributed random variable with parameter $\sum_i \lambda_i$.
 - The minimum of exponential random variables $E_i \sim \text{ExpO}(\lambda_i)$ is another exponentially-distributed random variable with parameter $\sum_i \lambda_i$.
 - The sum of Gaussian random variables $N_i \sim N(\mu_i, \sigma_i^2)$ is another Gaussian random variable with parameters $N(\sum_i \mu_i, \sum_i \sigma_i^2)$
 - Remember to always specify the valid values for your random variable when writing a PDF.