Crib 15 : Expectation, Variance

written by Alvin Wan . alvinwan.com/cs70. Monday, October 31, 2016
The crib sheet contains cheat-sheet worthy information but is not a substitute for lectures or for reading the notes. It also contains pointers and common mistakes.

1 Expectation

- Expectation of a random variable X is intuitively, the mean

$$
E[X]=\sum x \operatorname{Pr}(X=x)
$$

- Don't try to rationalize the following; taken as a whole, there is no intuitive meaning for $g(X)$.

$$
E[g(X)]=\sum g(x) \operatorname{Pr}(X=x)
$$

- The linearity of expectation always holds, regardless of the independence (or lack thereof). For example,

$$
E[2 X+3 Y]=2 E[X]+3 E[Y]
$$

More generally, take random variables X_{i} and constants α_{i}.

$$
E\left[\sum_{i} \alpha_{i} X_{i}\right]=\sum_{i} \alpha_{i} E\left[X_{i}\right]
$$

2 Covariance

- Take two random variables X, Y. They do not need to be independent. We have the following expression. See 3.2 for a proof.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

- Covariances sum, like vectors, and are symmetric.

$$
\begin{gathered}
\operatorname{cov}(X, Y)=\operatorname{cov}(Y, X) \\
\operatorname{cov}(A+B, Y)=\operatorname{cov}(A, Y)+\operatorname{cov}(B, Y)
\end{gathered}
$$

3 Variance

- Variance of a random variable X is intuitively, the squared distance from the mean, or the spread. See 3.1 for a proof.

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

- Variance is unaffected by a constant shift, α. Remember variance is the spread of our X.

$$
\operatorname{var}(X+\alpha)=\operatorname{var}(X)
$$

- A scalar constant is squared when taken out of variance.

$$
\operatorname{var}(\alpha X)=\alpha^{2} \operatorname{var}(X)
$$

- Take two random variables X, Y. They do not need to be independent. We have the following expression.

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)
$$

- Here's a nifty trick: Say you know variance and the expected value of a random variable X. Then, we can compute $E\left[X^{2}\right]$ fairly efficiently! As a matter of fact, it is $E\left[X^{2}\right]=\operatorname{var}(X)+E[X]^{2}$

4 Independence

- X, Y are independent if and only if $\operatorname{Pr}(X) \operatorname{Pr}(Y)=\operatorname{Pr}(X, Y)$
- If X, Y are independent, then $E[X] E[Y]=E[X Y]$, but the converse is not necessarily true.
- If X, Y are independent, then $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$, but the converse is not necessarily true. We call this the linearity of variance, but remember that this holds only if X, Y are independent!
- If X, Y are independent, then $\operatorname{cov}(X, Y)=0$, but the converse is not necessarily true.

5 Short Derivations

You are not responsible for the proofs and derivations in the section, but they may be enlightening.

5.1 Variance

We can derive this in a few lines. We use the law of iterated expectations below, $E[E[X]]=E[X]$, which won't be introduced until later in the course.

$$
\begin{aligned}
\operatorname{var}(X) & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}-2 X E[X]+E[X]^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

5.2 Covariance

We again apply the law of iterated expectation.

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y-2 E[X] E[Y]+E[X] E[Y]] \\
& =E[X Y]-2 E[X] E[Y]+E[X] E[Y] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

