Crib 13 : Bayes' Rule, Independence

written by Alvin Wan . alvinwan.com/cs70. Wednesday, October 19, 2016
The crib sheet contains cheat-sheet worthy information but is not a substitute for lectures or for reading the notes. It also contains pointers and common mistakes.

1 Bayes' Rule

- Bayes' Rule follows from both the definition of conditional probability and the chain rule.

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

- Keep in mind that Bayes' Rule is not always the easiest to reason about. We can alternative reason about the definition of conditional probability:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A, B)}{\operatorname{Pr}(B)}
$$

If $\operatorname{Pr}(B)$ is complex, we can also consider expanding it using the law of total probability.

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)+\operatorname{Pr}(B \mid \bar{A}) \operatorname{Pr}(\bar{A})}
$$

2 Independence

Do not forget that the equations specified below are true if and only if the events are pairwise independent or mutually independent, respectively.

- Given two events A and B, pairwise independence states that the two following statements are two, where the second follows from the first. (Apply Bayes')

$$
\begin{gathered}
\operatorname{Pr}(A, B)=\operatorname{Pr}(A) \operatorname{Pr}(B) \\
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
\end{gathered}
$$

- Given three events A, B, and C, mutual independence states the three are events 1. are pairwise independent and 2 . satisfy the following property.

$$
\operatorname{Pr}(A, B, C)=\operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C)
$$

- Two events are disjoint if $A \cap B=\emptyset$. Independence does not imply the events are disjoint, and disjoint events are not necessarily independent. For example, say A occurs only if B does not, and A occurs with nonzero probability. Then $\operatorname{Pr}(A \mid B)=0 \neq \operatorname{Pr}(A)$, and two disjoint events A and B are not independent.

