Crib 12

written by Alvin Wan . alvinwan.com/cs70. Monday, October 17, 2016
The crib sheet contains cheat-sheet worthy information but is not a substitute for lectures or for reading the notes. It also contains pointers and common mistakes.

1 Probability

- Ω is the sample space. $\operatorname{Pr}(\Omega)=1$
- An outcome is a point in the sample space.
- An event is a set of outcomes.
- Inclusion-exclusion tells us that $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap$ B).

On a side note: We also denote $\operatorname{Pr}(A \cap B)$ as $\operatorname{Pr}(A, B)$.
Hint: Use Venn Diagrams to convince yourself of both this statement and the generalized statement for inclusion-exclusion.

- The Law of Total Probability implies that $\operatorname{Pr}(A)=\operatorname{Pr}(A, B)+$ $\operatorname{Pr}(A, \bar{B})=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})$.
Full statement: $\operatorname{Pr}(A)=\sum_{B} \operatorname{Pr}(A, B)=\sum_{B} \operatorname{Pr}(A \mid B) \operatorname{Pr}(B)$
- The Chain Rule implies that $\operatorname{Pr}(A, B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)$.

Full statement: $\operatorname{Pr}\left(X_{1}, X_{2} \ldots X_{n}\right)=\operatorname{Pr}\left(X_{1} \mid X_{2} \ldots X_{n}\right) \ldots \operatorname{Pr}\left(X_{n-1} \mid X_{n}\right) \operatorname{Pr}\left(X_{n}\right)$

- Common trick: For probability, we can count the number of combinations that satisfy a condition and divide by the number of total combinations.
- Another common trick: To count probability of "at least one success", we can consider 1 - probability of "no successes". For example, given n independent trials, if we have probability p of success, then we have $(1-p)$ probability of failure. The probability of failing every time is $(1-p)^{n}$. The probability of at least one success is thus $1-(1-p)^{n}$.

