Crib 11

written by Alvin Wan . alvinwan.com/cs70

Wednesday, October 12, 2016

The crib sheet contains cheat-sheet worthy information but is not a substitute for lectures or for reading the notes. It also contains pointers and common mistakes.

1 Counting

- If we have k items, there are k ! ways to order them.
- If we have k items, each with n options, then we have n^{k} total combinations.
- If we have k items, each with n_{i} options, then we have $n_{1} \cdot n_{2} \cdots n_{k}$ total combinations.
- If we are counting the total number of anagrams of a given word w : compute a, the total number of letters in w, and for each repeated letter, compute the number of times it repeats r_{i}. The number of possible anagrams is thus the following, where k is the number of distinct letters that repeat.

$$
\frac{w!}{r_{1}!r_{2}!\ldots r_{k}!}
$$

For example, consider the number of anagrams of "SENPAISINHOCHEWI". The total number of letters is 17. There are 2 Ss, 2 Es, 2 Ns, and 3 Is. Thus, we have $\frac{17!}{2!2!2!3!}$ anagrams.

- If we are splitting k indistinguishable items among n slots, we use stars and bars.
- The inclusion-exclusion principle says that the union of two sets

$$
A \cup B=A+B-A \cap B
$$

Intuitively, think of Venn Diagrams. We can add two circles, then subtract the overlap once to get the full Venn Diagram. Likewise, the inclusion-principle also states that
$A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(C \cap A)+(A \cap B \cap C)$
Again, add all three circles, subtract pairwise overlap, and finally add the centerpiece.

