03 Support Vector Machines, Convex Optimization

by Alvin Wan

1 Convexity

Prove that if $f(x)$ is convex, $f(\alpha x+\beta)$ is convex for scalars α, β. Hint: If you're stuck, take $g(x)=\alpha x+\beta$.

Solution: Recall that a function is convex if

$$
\forall x_{1}, x_{2} \in \mathbb{R}, t \in[0,1], f\left((1-t) x_{1}+t x_{2}\right) \leq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)
$$

Take $g(x)=\alpha x+\beta$ and the following $f(g(x))$; we first prove a lemma.

$$
\begin{aligned}
& f\left(g\left((1-t) x_{1}+t x_{2}\right)\right) \\
& =f\left(\alpha\left((1-t) x_{1}+t x_{2}\right)+\beta\right) \\
& =f\left((1-t) \alpha x_{1}+(1-t) \beta+t \alpha x_{2}+t \beta\right) \\
& =f\left((1-t)\left(\alpha x_{1}+\beta\right)+t\left(\alpha x_{2}+\beta\right)\right) \\
& =f\left((1-t) g\left(x_{1}\right)+t g\left(x_{2}\right)\right)
\end{aligned}
$$

Then, simply apply the convexity of f.

$$
\begin{aligned}
f\left(g\left((1-t) x_{1}+t x_{2}\right)\right) & =f\left((1-t) g\left(x_{1}\right)+t g\left(x_{2}\right)\right) \\
& \leq(1-t) f\left(g\left(x_{1}\right)\right)+t f\left(g\left(x_{2}\right)\right)
\end{aligned}
$$

2 Linear Algebra

Compute the variance of $u \in \mathbb{R}^{n}$, where $u \sim(0, I)$. This notation simply means that u is sampled from some distribution with mean 0 , where the covariance matrix of u is I. Consider $A \in \mathbb{R}^{n \times n}$. Compute variance of $y=A u$.

Solution:

$$
\begin{aligned}
& E\left[(A u-\mu)^{T}(A u-\mu)\right] \\
& =E\left[(A u)^{T} A u\right] \\
& =E\left[u^{T} A^{T} A u\right] \\
& =E\left[\operatorname{Tr}\left(A^{T} A u u^{T}\right)\right] \\
& =\operatorname{Tr}\left(E\left[A^{T} A u u^{T}\right]\right) \\
& =\operatorname{Tr}\left(A^{T} A\right) \\
& =\|A\|_{F}^{2}
\end{aligned}
$$

As it turns out, this is precisely the Frobenius norm.

