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06 Gaussian Discriminant Analysis
by Alvin Wan

Let us briefly survey all possibilities available; we have three ways to create classifiers.

1. Generative Models

By definition, generative models compute all probabilistic models of all vari-
ables. ake fewer samples to reach the same accuracy as discriminative models
but make assumptions about the data’s distribution. The models are usually
more interpretable. In general, this is a two-step process. For each class ci, fit
the probability of the provided data x.

Pr(X|Y = ci)

Using this, estimate Pr(Y = c) and then make predictions from x. To minimize
the probability of error, pick y to maximize the following

Pr(Y |X)

Note that in the interim, with the first step, we have a viable way to generate
xs. This could be a goal in and of itself: our mission could be to generate
scholarly articles or computer programs, for example. On the other hand, this
first step may be a particularly difficult problem to solve.

2. Discriminative Models

By definition, we model only the target variables. These models take more sam-
ples to train but do not make assumptions about the class-conditional proba-
bility densities. We directly model the class conditional probabilities.

Pr(Y |X)

3. Decision Boundaries

Model the decision function directly, without even a posterior probability. The
issue with this approach is that we no measure of how confident our prediction
is.

In this note, we will focus on two types of generative models, both variants of Gaussian
Discriminant Analysis.
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1 Gaussian Discriminant Analysis

We will assume that each conditional is Gaussian and that the set C = {i|yi = c} is
comprised of the indices for all yi of this class.

Pr(X|Y = c) ∼ N (µc, σ
2I)

We will model Pr(X|Y = c) using maximum likelihood estimates of the Guassian.

µ̂c =
1

|C|
∑
i∈C

xi

Λ̂c =
1

|C|
∑
i∈C

(xi − µ̂c)(xi − µ̂c)T

Using this, we find that the likelihood of any class is directly proportional to the
number of items in that class. In other words,

Pr(Y = c) =
|C|
n

1.1 Decision Rule

We choose the class that maximizes the joint probability Pr(X, Y ) = Pr(X|Y ) Pr(Y ).

argmax Pr(X|Y = c) Pr(Y = c)

Plugging in for both the conditional and the density, we have the following.

argmax(2π)k/2|Λ̂c|1/2exp(−1

2
(xi − µ̂c)T Λ̂−1

c (xi − µ̂c))
|C|
n

Since the log function is monotonically increasing, we can equivalently pick according
to the maximum of these values logged.

argmax
c
−1

2
(x− µ̂c)T Λ̂−1

c (x− µ̂c)−
1

2
log(2π)k|Λ̂c|+ log

|C|
n

Finally, negate the optimization function so that the maximization problem now
becomes a minimization problem.

argmin
c

1

2
(x− µ̂c)T Λ̂−1

c (x− µ̂c) +
1

2
log(2π)k|Λ̂c| − log

|C|
n

To find our class, we simply evaluate the quadratics and pick the c that corresponds
to our smallest value.
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2 Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis is a more general version of a linear classifier. The
quadratic term allows QDA to separate data using a quadric surface in higher di-
mensions. For the two-class case, the decision boundary lies along all x such that
Q1(x) = Q2(x), where each Qc is the following.

Qc(x) = −1

2
(x− µ̂c)T Λ̂−1

c (x− µ̂c)−
1

2
log(2π)k|Λ̂c|+ log

|C|
n

This generative model yields Pr(Y |X), allowing us to quantify the confidence of our
classification. To simplify the expression, let C be the event that Y = c and C̄ be
the event that Y 6= c.

Pr(C|X) =
Pr(X|C) Pr(C)

Pr(X|C) Pr(C) + Pr(X|C̄) Pr(C̄)

=
1

1 + Pr(X|C̄) Pr(C̄)
Pr(X|C) Pr(C)

We consider the fraction in the denominator Pr(X|C̄) Pr(C̄)
Pr(X|C) Pr(C)

. We will use two simplifica-

tions. First, α = elogα, and second, eα

eβ
= eα−β. This leads allows us to express the

fraction as a function of Qi(x).

Pr(C|X) =
1

1 + exp(QC̄ −QC)

For the two class case, we have that on the boundary QC = QC̄ for either class. Thus,

Pr(Y = c1|X) = Pr(Y = c2|X) =
1

1 + e0
=

1

2
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3 Linear Discriminant Analysis (LDA)

In LDA, we assume that covariance matrices Λi are the same for all classes. As we
will show below, this results in a hyperplane decision boundary.

Λ̂ =
1

n

k∑
i=1

∑
j∈Ck

(xj − µ̂i)(xj − µ̂i)T

Let us consider the general class-conditional expression derived in the analysis of
QDA. In our two class case, for our two classes C1 and C2, we observe that the
exponent in the denominator Q1 −Q2 is the following.

=− 1

2
(x− µ̂1)T Λ̂−1(x− µ̂1)− 1

2
log(2π)k|Λ̂|+ log

|C1|
n

+
1

2
(x− µ̂2)T Λ̂−1(x− µ̂2) +

1

2
log(2π)k|Λ̂| − log

|C2|
n

We can first re-arrange terms, then combine the constants that are not a function of
x.

=− 1

2
(x− µ̂1)T Λ̂−1(x− µ̂1) +

1

2
(x− µ̂2)T Λ̂−1(x− µ̂2)

− 1

2
log(2π)k|Λ̂|+ log

|C1|
n

+
1

2
log(2π)k|Λ̂| − log

|C2|
n

=− 1

2
(x− µ̂1)T Λ̂−1(x− µ̂1) +

1

2
(x− µ̂2)T Λ̂−1(x− µ̂2) + log

|C1|
|C2|

Now, expand the first two terms.

=− 1

2
xT Λ̂−1x+ µ̂T1 Λ̂−1x− 1

2
µ̂T1 Λ̂−1µ̂1 +

1

2
xT Λ̂−1x− µ̂T2 Λ̂−1x+

1

2
µ̂T2 Λ̂−1µ̂2

+ log
|C1|
|C2|

4



We can cancel out the two 1
2
xT Λ̂−1x.

=µ̂T1 Λ̂−1x− 1

2
µ̂T1 Λ̂−1µ̂1 − µ̂T2 Λ̂−1x+

1

2
µ̂T2 Λ̂−1µ̂2 + log

|C1|
|C2|

We finally re-arrange to get our desired expression.

=(µ̂1 − µ̂2)T Λ̂−1x− 1

2
µ̂T1 Λ̂−1µ̂1 +

1

2
µ̂T2 Λ̂−1µ̂2 + log

|C1|
|C2|

We find that this is equivalent to βTx+ α, where

β = µ̂1 − µ̂2

α = −1

2
µ̂T1 Λ̂−1µ̂1 +

1

2
µ̂T2 Λ̂−1µ̂2 + log

|C1|
|C2|

As a result, this decision boundary is linear. Note that unlike a perceptron, LDA
still yields a decision boundary for data that is not linearly separable. Recall that a
perceptron will not converge. On the other hand, LDA simply yields a value.

4 Special Cases

In one case, we have a spherical Λ = σ2I. We see the following decision boundary.
First, take our expression from the last section and plug in Λ.

(µ̂1 − µ̂2)Tσ2I
−1
x− 1

2
µ̂T1 σ

2I
−1
µ̂1 +

1

2
µ̂T2 σ

2I
−1
µ̂2 = 0

Multiply all terms by σ2.

(µ̂1 − µ̂2)Tx− 1

2
µ̂T1 µ̂1 +

1

2
µ̂T2 µ̂2 = 0

(µ̂1 − µ̂2)Tx− 1

2
(µ̂T1 µ̂1 − µ̂T2 µ̂2) = 0
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Finally, note that a2 − b2 = (a+ b)(a− b), and combine like terms.

(µ̂1 − µ̂2)Tx− 1

2
(µ̂1 − µ̂2)T (µ̂1 + µ̂2) = 0

(µ̂1 − µ̂2)T (x− 1

2
(µ̂1 + µ̂2)) = 0

In the second case, we do not have a spherical Λ. Thus, we see the following decision
boundary.

(µ̂0 − µ̂1)TΛ−1(x− 1

2
(µ̂0 + µ̂1)) = 0

Both of these formulations have an intuitive interpretation. We are effectively taking
the midpoint of the two means but in a vector space.
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