02 Bias-Variance Decomposition

by Alvin Wan . alvinwan.com/cs189/fa17
Treat this as an exam situation. You will be given 5 minutes to complete this quiz.

1 Just Bias and Variance

Let us consider a probabilistic perspective, where the data is now "random". We believe that our data is sampled from a true distribution, and our goal is to uncover that underlying distribution. Take your data to be i.i.d. $\left\{\vec{x}_{i}\right\}_{i=1}^{n}$ where $\overrightarrow{x_{i}} \sim$ $\mathcal{N}\left(\mu, \sigma^{2} I\right), \overrightarrow{x_{i}} \in \mathbb{R}^{d}$.

1. Say you have only one point (e.g., $n=1$). Compute the maximum likelihood estimate $\hat{\mu}$ for $E[X]$. What is $\hat{\mu}$?
2. Compute the mean-squared error (MSE), $E\|\hat{\mu}-\mu\|_{2}^{2}$. Express it terms of μ, σ, d.
3. Instead of MLE, say we develop an affine model to estimate $\mu, \hat{\mu}_{2}=\alpha x+\beta$. What is $E\left[\hat{\mu}_{2}\right]$?
4. For simplicity, say $\beta=0$. Compute the MSE for $\hat{\mu}_{2}$.
