02 Bias-Variance Decomposition

by Alvin Wan . alvinwan.com/cs189/fa17
Treat this as an exam situation. You will be given 5 minutes to complete this quiz.

1 Just Bias and Variance

Let us consider a probabilistic perspective, where the data is now "random". We believe that our data is sampled from a true distribution, and our goal is to uncover that underlying distribution. Take your data to be i.i.d. $\left\{\overrightarrow{x_{i}}\right\}_{i=1}^{n}$ where $\overrightarrow{x_{i}} \sim$ $\mathcal{N}\left(\mu, \sigma^{2} I\right), \overrightarrow{x_{i}} \in \mathbb{R}^{d}$.

1. Say you have only one point (e.g., $n=1$). Compute the maximum likelihood estimate $\hat{\mu}$ for $E[X]$. What is $\hat{\mu}$?
Solution: It's simply your only point. The MLE is

$$
\hat{\mu}=\sum_{i=1}^{n} x_{i}=x
$$

2. Compute the mean-squared error (MSE), $E\|\hat{\mu}-\mu\|_{2}^{2}$. Express it terms of μ, σ, d. Solution: We have two available methods, one vectorized approach and one component-wise.
Solution 1 Break down the vector component-wise.

$$
\begin{array}{rlr}
E\|\hat{\mu}-\mu\|_{2}^{2} & =E\left[\|x-\mu\|_{2}^{2}\right] & \\
& =\sum_{i} E\left[\left(x_{i}-\mu_{i}\right)^{2}\right] & \\
& =d \sigma^{2} \quad \text { definition of variance }
\end{array}
$$

Solution 2 Instead of breaking this down component-wise, we can also realize this by applying the trace.

$$
\begin{array}{rlr}
E\|\hat{\mu}-\mu\|_{2}^{2} & =E\left[\|x-\mu\|_{2}^{2}\right] & \\
& =E\left[(x-\mu)^{T}(x-\mu)\right] & \\
& =E\left[\operatorname{Tr}\left((x-\mu)^{T}(x-\mu)\right)\right] & \text { Trace of a scalar is itself } \\
& =E\left[\operatorname{Tr}\left((x-\mu)(x-\mu)^{T}\right)\right] & \text { Cyclic property of trace } \\
& =E[\operatorname{Tr}(\Sigma)] & \text { where } \Sigma \text { is the covariance matrix } \\
& =d \sigma^{2} &
\end{array}
$$

3. Instead of MLE, say we develop an affine model to estimate $\mu, \hat{\mu}_{2}=\alpha x+\beta$. What is $E\left[\hat{\mu}_{2}\right]$?

Solution:

$$
E\left[\hat{\mu}_{2}\right]=E[\alpha x+\beta]=\alpha E[x]+\beta=\alpha \mu+\beta
$$

4. For simplicity, say $\beta=0$. Compute the MSE for $\hat{\mu}_{2}$.

Solution: We have two available methods, one vectorized approach and one component-wise.
Solution 1 Expand the terms out.

$$
\begin{aligned}
E\left[\left\|\hat{\mu_{2}}-\mu\right\|_{2}^{2}\right] & =E[\|\underbrace{\alpha x}_{a}-\underbrace{\mu}_{b}\|_{2}^{2}] \\
& =\underbrace{\alpha^{2} E\left[\|x\|_{2}^{2}\right.}_{a^{2}}-\underbrace{2 \alpha E[x \mu]}_{2 a b}+\underbrace{E\left[\|\mu\|_{2}^{2}\right]}_{b^{2}} \\
& \stackrel{(a)}{=} \alpha^{2} d \sigma^{2}+\alpha^{2}\|\mu\|_{2}^{2}-2 \alpha\|\mu\|_{2}^{2}+\|\mu\|_{2}^{2} \quad \mu \text { is constant w.r.t. } x \\
& =\alpha^{2} d \sigma^{2}+(\alpha-1)^{2}\|\mu\|_{2}^{2}
\end{aligned}
$$

(a) We can use the fact that $\operatorname{var}\left(x_{i}\right)=E\left[x_{i}^{2}\right]-E\left[x_{i}\right]^{2}$. Rearrange to get $E\left[x_{i}^{2}\right]=$ $\operatorname{var}\left(x_{i}\right)+E\left[x_{i}\right]^{2}$.

$$
E\left[\|x\|_{2}^{2}\right]=\sum_{i} E\left[x_{i}^{2}\right]=\sum_{i}\left(\operatorname{var}\left(x_{i}\right)-E\left[x_{i}\right]^{2}\right)=\sum_{i}\left(\sigma^{2}-\|\mu\|^{2}\right)=\|\mu\|^{2}+d \sigma^{2}
$$

Solution 2 Alternatively, use the trace and add 0.

$$
\begin{array}{ll}
E\left[\left\|\hat{\mu}_{2}-\mu\right\|_{2}^{2}\right] & \\
=E\left[\left\|\hat{\mu}_{2}-E\left[\hat{\mu}_{2}\right]+E\left[\hat{\mu}_{2}\right]-\mu\right\|_{2}^{2}\right] & \\
=E[\|\underbrace{\hat{\mu}_{2}-\alpha \mu}_{a}+\underbrace{\alpha \mu-\mu}_{b}\|_{2}^{2}] & \text { Recall } \beta=0 \\
=E[\| \underbrace{\hat{\mu}_{2}-\alpha \mu \|_{2}^{2}}_{a^{2}}]+E[\| \underbrace{2\left(\hat{\mu}_{2}-\alpha \mu\right)^{T}(\alpha \mu-\mu)}_{2 a b}]+E[\underbrace{\left[\alpha \mu-\mu \|_{2}^{2}\right.}_{b^{2}}] & \\
\stackrel{(a)}{=} \alpha^{2} d \sigma^{2}+E\left[\| 2\left(\hat{\mu}_{2}-\alpha \mu\right)^{T}(\alpha \mu-\mu)\right]+E\left[\|\alpha \mu-\mu\|_{2}^{2}\right] & \\
\stackrel{(b)}{=} \alpha^{2} d \sigma^{2}+E\left[\|\alpha \mu-\mu\|_{2}^{2}\right] & \text { All constant w.r.t. x } \\
=\alpha^{2} d \sigma^{2}+(\alpha-1)^{2}\|\mu\|_{2}^{2} &
\end{array}
$$

(a) Recall that $\hat{\mu}_{2}=\alpha x+\beta=\alpha x$, so

$$
E\left[\left\|\hat{\mu}_{2}-\alpha \mu\right\|_{2}^{2}\right]=E\left[\|\alpha(x-\mu)\|_{2}^{2}\right]=\alpha^{2} E\left[\|x-\mu\|_{2}^{2}\right]
$$

, where the expectation is $d \sigma^{2}$ per part 1, to get $\alpha^{2} d \sigma^{2}$. (b) Rewrite the term, plugging in $\hat{\mu}_{2}$.

$$
E\left[2\left(\hat{\mu}_{2}-\alpha \mu\right)^{T}(\alpha \mu-\mu)\right]=E\left[2(\alpha(x-\mu))^{T}(\alpha \mu-\mu)\right]
$$

Note that all terms except x are constant and that $E[x-\mu]=E[x]-\mu=0$, since $E[x]=\mu$ by construction. Thus, the second term is 0 .

