Quiz 2 Solutions

02 Ridge Regression

by Alvin Wan . alvinwan.com/cs189/fa17
Treat this as an exam situation. You will be given 5 minutes to complete this quiz.

1 Probability Review

1. If $y=A x+b$ and $\operatorname{cov}(x)=\Sigma$ (A, b are knowns), compute $\operatorname{cov}(y)$

Solution:
First, notice $y-E[y]=(A x+b)-E[A x+b]=A x+b-(A E[x]+b)=A[x-E[x]]$.

$$
\begin{aligned}
\operatorname{cov}(y) & =E\left[(y-E[y])(y-E[y])^{T}\right] \\
& =A E\left[(x-E[x])(x-E[x])^{T}\right] A^{T} \\
& =A \Sigma A^{T}
\end{aligned}
$$

2. (more linear algebra-ish) Prove that if X is a valid transition matrix (i.e., the entries of every row sum to 1), then X^{k} for any positive integer k will yield a matrix with the same property.
Solution: Note that if the matrix A is a valid transition matrix, $A \mathbb{1}=\mathbb{1}$ for the vector of all ones $\mathbb{1}$.
Base case: $X X \mathbb{1}=X \mathbb{1}=\mathbb{1}$
Inductive Hypothesis: Assume this holds for X^{i}.
Inductive Step: $\quad X^{i+1} \mathbb{1}=X^{i} X \mathbb{1}=X^{i} \mathbb{1}=\mathbb{1}$, where we apply the inductive hypothesis in the last step.

2 Generalized Tikhonov Regularization

Here we explore a generalized version of ridge regression, Tikhonov regularization:

$$
\min _{w}\|X w-y\|_{2}^{2}+\|\Gamma w\|_{2}^{2}
$$

1. We can even generalize Tikhonov regularization, if we view w as general multivariate gaussians. Find a closed-form solution to the following optimization problem, where $\mu=E[w],\|x\|_{A}^{2}=x^{T} A x$ and A, B are inverse covariance matrices of y, w, respectively.

$$
\min _{w}\|X w-y\|_{A}^{2}+\|w-\mu\|_{B}^{2}
$$

Solution:

Keep in mind that we've previously proved $\frac{\partial x^{T} w}{\partial x}=\frac{\partial w^{T} x}{\partial x}=w$ and $\frac{\partial x^{T} A x}{\partial x}=$ $\left(A+A^{T}\right) x($ see crib 1).

$$
\begin{aligned}
& \frac{\partial}{\partial w}(X w-y)^{T} A(X w-y)+(w-\mu)^{T} B(w-\mu) \\
& \stackrel{(a)}{=} \frac{\partial}{\partial w}\left(w^{T} X^{T} A X w-2 w^{T} X^{T} A y+y^{T} y+w^{T} B w-2 w^{T} B \mu+\mu^{T} \mu\right) \\
& =X^{T}\left(A+A^{T}\right) X w-2 X^{T} A y+\left(B+B^{T}\right) w-2 B \mu \\
& =2 X^{T} A X w-2 X^{T} A y+2 B w-2 B \mu \\
& =2 X^{T} A(X w-y)+2 B(w-\mu)
\end{aligned}
$$

(a) Remember: we can mush $a^{T} b=b^{T} a$ for column vectors a, b. (b) Covariance matrices are symmetric, so $B=B^{T}$. Now, set equal to 0 and solve.

$$
\begin{aligned}
2 X^{T} A(X w-y)+2 B(w-\mu) & =0 \\
X^{T} A(X w-y) & =B(\mu-w) \\
\left(X^{T} A X+B\right) w & =X^{T} A y+B \mu \\
w^{*} & =\left(X^{T} A X+B\right)^{-1}\left(X^{T} A y+B \mu\right)
\end{aligned}
$$

2. Relate this generalized expression to ridge regression as formulated in class:

$$
\min _{w}\|X w-y\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

Solution:

We make the assumption that all y are i.i.d. Then, the inverse covariance matrix for $y, A=I$, is the identity. Note that using our definition from the previous part of $\|x\|_{A}^{2}=x^{T} A x=x^{T} x=\|x\|_{2}^{2}$. Thus,

$$
\|X w-y\|_{A}^{2}=\|X w-y\|_{2}^{2}
$$

Pick a suitable value for $B=\Gamma^{T} \Gamma$, for a Tikhonov matrix Γ. We use $\Gamma=\lambda I$, meaning we assume all w_{i} are i.i.d. with variance λ. Thus, $\|w\|_{B}^{2}=\lambda w^{T} w=$ $\lambda\|w\|_{2}^{2}$

$$
\|w-\mu\|_{B}^{2}=\lambda\|w-\mu\|_{2}^{2}
$$

Finally, we assume w is 0 -mean, so $\mu=0$. This gives us our final formulation of ridge regression.

$$
\min _{w}\|X w-y\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

In short, ridge regression assumes that w are i.i.d. 0 -mean with variance λ and that y are i.i.d.
3. Using your understanding of the relationship, find the closed-form solution to ridge regression. (i.e., You should not need gradients.)
Solution: From the previous part, we know this specific case sets $A=I, B=$ $\lambda I, \mu=0$, so plugging in, we have:

$$
w^{*}=\left(X^{T} A X+B\right)^{-1}\left(X^{T} A y+B \mu\right)=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y
$$

