Quiz 1 Solutions

01 Background

by Alvin Wan . alvinwan.com/cs189/fa17

Treat this as an exam situation. You will be given 5 minutes to complete this quiz.

1 PSD-ness

Consider a real, symmetric matrix A.

(a) Prove that if all of its eigenvalues are non-negative, $\exists B \text{ s.t. } A = BB^T$.

Solution: If all $\lambda_i \geq 0$, then $\forall i, \sqrt{\lambda_i}$ is well-defined. Let $\Lambda^{1/2}$ denote a diagonal matrix where its non-zero entries are $\sqrt{\lambda_i}$. Note additionally that A is real, symmetric and is thus diagonalizable. Then,

$$A = P\Lambda P^{T} = P\Lambda^{1/2}\Lambda^{1/2}P^{T} = (P\Lambda^{1/2})(P\Lambda^{1/2})^{T} = BB^{T}$$

such that $B = P \Lambda^{1/2}$.

(b) Prove that if $\exists B \text{ s.t. } A = BB^T$, then the quadratic form is non-negative $\forall x, x^T A x \ge 0$.

Solution:

$$\forall x, x^{T}Ax = x^{T}BB^{T}x = (B^{T}x)^{T}(B^{T}x) = \|B^{T}x\|_{2}^{2} \ge 0$$

The last step is true, because all norms are non-negative by construction.

In our discussion worksheet, we will then prove that $\forall x, x^T A x \ge 0$ implies A's eigenvalues are all non-negative! This proves that these three conditions are all equivalent conditions for PSD-ness of a matrix A.