Quiz 1 Solutions

01 Background

by Alvin Wan . alvinwan.com/cs189/fa17

Treat this as an exam situation. You will be given 5 minutes to complete this quiz.

1 PSD-ness

Consider a real, symmetric matrix A.
(a) Prove that if all of its eigenvalues are non-negative, $\exists B$ s.t. $A=B B^{T}$.

Solution: If all $\lambda_{i} \geq 0$, then $\forall i, \sqrt{\lambda_{i}}$ is well-defined. Let $\Lambda^{1 / 2}$ denote a diagonal matrix where its non-zero entries are $\sqrt{\lambda_{i}}$. Note additionally that A is real, symmetric and is thus diagonalizable. Then,

$$
A=P \Lambda P^{T}=P \Lambda^{1 / 2} \Lambda^{1 / 2} P^{T}=\left(P \Lambda^{1 / 2}\right)\left(P \Lambda^{1 / 2}\right)^{T}=B B^{T}
$$

such that $B=P \Lambda^{1 / 2}$.
(b) Prove that if $\exists B$ s.t. $A=B B^{T}$, then the quadratic form is non-negative $\forall x, x^{T} A x \geq$ 0.

Solution:

$$
\forall x, x^{T} A x=x^{T} B B^{T} x=\left(B^{T} x\right)^{T}\left(B^{T} x\right)=\left\|B^{T} x\right\|_{2}^{2} \geq 0
$$

The last step is true, because all norms are non-negative by construction.

In our discussion worksheet, we will then prove that $\forall x, x^{T} A x \geq 0$ implies A 's eigenvalues are all non-negative! This proves that these three conditions are all equivalent conditions for PSD-ness of a matrix A.

