Crib 1

01 Background

by Alvin Wan . alvinwan.com/cs189/fa17

1 Conventions, Definitions

1. $x \in \mathbb{R}^{d}$ (column vector), $X \in \mathbb{R}^{n \times d}$ (n samples, d features per sample)
2. A is positive semidefinite (PSD) iff (all equivalent conditions):

- unique Cholesky decomposition $A=B B^{T}$, where B is lower triangular
- $\forall x^{T} A x \geq 0$
- all eigenvalues ≥ 0

3. A is positive definite (PD) iff $\forall x, x^{T} A x>0$ iff all eigenvalues >0.
4. Eigendecomposition: $A=P \Lambda P^{T}=\sum_{i} v_{i} \lambda_{i} v_{i}^{T}$

- D diagonal with λ_{i} entries, P comprised of eigenvectors.
- a.k.a., diagonalization, spectral decomposition
- admitted by any real, symmetric matrix

5. Singular Value Decomposition (SVD): $A=U \Sigma V^{T}=\sum_{i} u_{i} \sigma_{i} v_{i}^{T}$

- Λ contains the singular values σ_{i} along its diagonal, U are left singular vectors and V are right singular vectors
- any matrix, doesn't need to be square or symmetric

6. If a matrix A is PSD, eigenvalues of A are the same as singular values of A.

2 Ordinary Least Squares (OLS)

1. $\frac{\partial x^{T} w}{\partial x}=\frac{\partial w^{T} x}{\partial x}=w$ for $w, x \in \mathbb{R}^{d}$ (implies $\frac{\partial A x}{\partial x}=A^{T}$ for $A \in \mathbb{R}^{n \times d}, x \in \mathbb{R}^{d}$)
2. $\frac{\partial f(x)^{T} g(x)}{\partial x}=\frac{\partial f(x)}{\partial x} g(x)+\frac{\partial g(x)}{\partial x} f(x)$ for $f(x), g(x), x \in \mathbb{R}^{d}$ (derivation below)
3. objective: $\min _{w}\|X w-y\|_{2}^{2}, w, x \in \mathbb{R}^{d}, X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}$
4. solution: $w^{*}=\left(X^{T} X\right)^{-1} X^{T} y$, prediction: $\hat{y}=X w^{*}$

3 Appendix: Product Rule

Let's start by deriving the product rule. First, consider $f(x)=\left[\begin{array}{llll}f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x)\end{array}\right]^{T}$ and a similar definition for $g(x)$. Note that $f_{i}(x), g_{i}(x)$ are scalar-valued functions. e.g., $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

$$
\begin{equation*}
\frac{\partial f(x)^{T} g(x)}{\partial x}=\frac{\partial \sum_{i} f_{i}(x) g_{i}(x)}{\partial x}=\sum_{i} \frac{\partial f_{i}(x) g_{i}(x)}{\partial x} \tag{1}
\end{equation*}
$$

Take the partial for each i, first. Here, I will use the notation $f_{i, x_{j}}(x)=\frac{\partial f_{i}(x)}{\partial x_{j}}$.

$$
\frac{\partial f_{i}(x) g_{i}(x)}{\partial x}=\left[\begin{array}{c}
f_{i, x_{1}}(x)^{T} g_{i}(x)+f_{i}(x)^{T} g_{i, x_{1}}(x) \\
f_{i, x_{2}}(x)^{T} g_{i}(x)+f_{i}(x)^{T} g_{i, x_{2}}(x) \\
\vdots \\
f_{i, x_{n}}(x)^{T} g_{i}(x)+f_{i}(x)^{T} g_{i, x_{n}}(x)
\end{array}\right]=\frac{\partial f_{i}(x)}{\partial x} g_{i}(x)+f_{i}(x) \frac{\partial g_{i}(x)}{\partial x}
$$

Note that $g_{i}(x)$ is a scalar but $\frac{g_{i}(x)}{\partial x}$ is a vector; the same applies to f. Continuing with (1), we plug in:

$$
\begin{aligned}
& =\sum_{i} \frac{\partial f_{i}(x)}{\partial x} g_{i}(x)+f_{i}(x) \frac{\partial g_{i}(x)}{\partial x} \\
& =\left[\begin{array}{llll}
\frac{\partial f_{1}(x)}{\partial x} & \frac{\partial f_{2}(x)}{\partial x} & \ldots & \frac{\partial f_{n}(x)}{\partial x}
\end{array}\right] g(x)+\left[\begin{array}{llll}
\frac{\partial g_{1}(x)}{\partial x} & \frac{\partial g_{2}(x)}{\partial x} & \ldots & \frac{\partial g_{n}(x)}{\partial x}
\end{array}\right] f(x) \\
& =\frac{\partial f(x)}{\partial x} g(x)+\frac{\partial g(x)}{\partial x} f(x)
\end{aligned}
$$

Thanks to Jonathan Xia for helping me. :P
Example) Let us see an example of product rule.
Take $\frac{\partial x^{T} A x}{\partial x}$. We will take $f(x)=x$, the first x, and $g(x)=A x$, to fit the form $\frac{\partial f(x)^{T} g(x)}{\partial x}$. Plug in to the formula for product rule above and solve.

$$
\frac{\partial f(x)}{\partial x} g(x)+\frac{\partial g(x)}{\partial x} f(x)=\frac{\partial x}{\partial x} A x+\frac{\partial A x}{\partial x} x=A x+A^{T} x=\left(A+A^{T}\right) x
$$

