Gaussian Discriminant Analyses

compiled by Alvin Wan from Professor Benjamin Recht's lecture

Let us briefly survey all possibilities available; we have three ways to create classifiers.

1. Empirical Risk Minimization (ERM)

We may choose ridge regression or lasso, for example. In general, we would pick an objective function of the following form.

$$
\operatorname{minimize}_{w} \frac{1}{n} \sum \operatorname{loss}\left(w ;\left(x_{i}, y_{i}\right)\right)+\lambda \text { penalty }
$$

2. Generative Models

This is a two-step process. For each class c_{i}, fit the probability of the provided data x.

$$
\operatorname{Pr}\left(X \mid Y=c_{i}\right)
$$

Using this, estimate $\operatorname{Pr}(Y=c)$ and then make predictions from x. To minimize the probability of error, pick y to maximize the following

$$
\operatorname{Pr}(Y \mid X)
$$

Note that in the interim, with the first step, we have a viable way to generate $x \mathrm{~s}$. This could be a goal in and of itself: our mission could be to generate scholarly articles or computer programs, for example. On the other hand, this first step may be a particularly difficult problem to solve.

3. Discriminative Models

We directly model the class conditional probabilities, directly.

$$
\operatorname{Pr}(Y \mid X)
$$

In this note, we will focus on two types of generative models, both variants of Gaussian Discriminant Analysis.

1 Gaussian Discriminant Analysis

We will assume that each conditional is Gaussian and that the set $C=\left\{i \mid y_{i}=c\right\}$ is comprised of the indices for all y_{i} of this class.

$$
\operatorname{Pr}(X \mid Y=c) \sim \mathscr{N}\left(\mu_{c}, \sigma^{2} I\right)
$$

We will model $\operatorname{Pr}(X \mid Y=c)$ using maximum likelihood estimates of the Guassian.

$$
\begin{gathered}
\hat{\mu}_{c}=\frac{1}{|C|} \sum_{i \in C} x_{i} \\
\hat{\Lambda}_{c}=\frac{1}{|C|} \sum_{i \in C}\left(x_{i}-\hat{\mu}_{c}\right)\left(x_{i}-\hat{\mu}_{c}\right)^{T}
\end{gathered}
$$

Using this, we find that the likelihood of any class is directly proportional to the number of items in that class. In other words,

$$
\operatorname{Pr}(Y=c)=\frac{|C|}{n}
$$

1.1 Decision Rule

We choose the class that maximizes the joint probability $\operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)$.

$$
\operatorname{argmax} \operatorname{Pr}(X \mid Y=c) \operatorname{Pr}(Y=c)
$$

Plugging in for both the conditional and the density, we have the following.

$$
\operatorname{argmax}(2 \pi)^{k / 2}\left|\hat{\Lambda}_{c}\right|^{1 / 2} \exp \left(-\frac{1}{2}\left(x_{i}-\hat{\mu}_{c}\right)^{T} \hat{\Lambda}_{c}^{-1}\left(x_{i}-\hat{\mu}_{c}\right)\right) \frac{|C|}{n}
$$

Since the \log function is monotonically increasing, we can equivalently pick according to the maximum of these values logged.

$$
\underset{c}{\operatorname{argmax}}-\frac{1}{2}\left(x-\hat{\mu}_{c}\right)^{T} \hat{\Lambda}_{c}^{-1}\left(x-\hat{\mu}_{c}\right)-\frac{1}{2} \log (2 \pi)^{k}\left|\hat{\Lambda}_{c}\right|+\log \frac{|C|}{n}
$$

Finally, negate the optimization function so that the maximization problem now becomes a minimization problem.

$$
\underset{c}{\operatorname{argmin}} \frac{1}{2}\left(x-\hat{\mu}_{c}\right)^{T} \hat{\Lambda}_{c}^{-1}\left(x-\hat{\mu}_{c}\right)+\frac{1}{2} \log (2 \pi)^{k}\left|\hat{\Lambda}_{c}\right|-\log \frac{|C|}{n}
$$

To find our class, we simply evaluate the quadratics and pick the c that corresponds to our smallest value.

2 Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis is a more general version of a linear classifier. The quadratic term allows QDA to separate data using a quadric surface in higher dimensions. For the two-class case, the decision boundary lies along all x such that $Q_{1}(x)=Q_{2}(x)$, where each Q_{c} is the following.

$$
Q_{c}(x)=-\frac{1}{2}\left(x-\hat{\mu}_{c}\right)^{T} \hat{\Lambda}_{c}^{-1}\left(x-\hat{\mu}_{c}\right)-\frac{1}{2} \log (2 \pi)^{k}\left|\hat{\Lambda}_{c}\right|+\log \frac{|C|}{n}
$$

This generative model yields $\operatorname{Pr}(Y \mid X)$, allowing us to quantify the confidence of our classification. To simplify the expression, let C be the event that $Y=c$ and \bar{C} be the event that $Y \neq c$.

$$
\begin{aligned}
\operatorname{Pr}(C \mid X) & =\frac{\operatorname{Pr}(X \mid C) \operatorname{Pr}(C)}{\operatorname{Pr}(X \mid C) \operatorname{Pr}(C)+\operatorname{Pr}(X \mid \bar{C}) \operatorname{Pr}(\bar{C})} \\
& =\frac{1}{1+\frac{\operatorname{Pr}(X \mid \bar{C}) \operatorname{Pr}(\bar{C})}{\operatorname{Pr}(X \mid C) \operatorname{Pr}(C)}}
\end{aligned}
$$

We consider the fraction in the denominator $\frac{\operatorname{Pr}(X \mid \bar{C}) \operatorname{Pr}(\bar{C})}{\operatorname{Pr}(X \mid C) \operatorname{Pr}(C)}$. We will use two simplifications. First, $\alpha=e^{\log \alpha}$, and second, $\frac{e^{\alpha}}{e^{\beta}}=e^{\alpha-\beta}$. This leads allows us to express the fraction as a function of $Q_{i}(x)$.

$$
\operatorname{Pr}(C \mid X)=\frac{1}{1+\exp \left(Q_{\bar{C}}-Q_{C}\right)}
$$

For the two class case, we have that on the boundary $Q_{C}=Q_{\bar{C}}$ for either class. Thus,

$$
\operatorname{Pr}\left(Y=c_{1} \mid X\right)=\operatorname{Pr}\left(Y=c_{2} \mid X\right)=\frac{1}{1+e^{0}}=\frac{1}{2}
$$

3 Linear Discriminant Analysis (LDA)

In LDA, we assume that covariance matrices Λ_{i} are the same for all classes.

$$
\hat{\Lambda}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j \in C_{k}}\left(x_{j}-\hat{\mu}_{i}\right)\left(x_{j}-\hat{\mu}_{i}\right)^{T}
$$

Let us consider the general class-conditional expression derived in the analysis of QDA. In our two class case, for our two classes C_{1} and C_{2}, we observe that the exponent in the denominator $Q_{1}-Q_{2}$ is the following.

$$
\begin{aligned}
= & -\frac{1}{2}\left(x-\hat{\mu}_{1}\right)^{T} \hat{\Lambda}^{-1}\left(x-\hat{\mu}_{1}\right)-\frac{1}{2} \log (2 \pi)^{k}|\hat{\Lambda}|+\log \frac{\left|C_{1}\right|}{n} \\
& +\frac{1}{2}\left(x-\hat{\mu}_{2}\right)^{T} \hat{\Lambda}^{-1}\left(x-\hat{\mu}_{2}\right)+\frac{1}{2} \log (2 \pi)^{k}|\hat{\Lambda}|-\log \frac{\left|C_{2}\right|}{n}
\end{aligned}
$$

We can first re-arrange terms, then combine the constants that are not a function of x.

$$
\begin{aligned}
= & -\frac{1}{2}\left(x-\hat{\mu}_{1}\right)^{T} \hat{\Lambda}^{-1}\left(x-\hat{\mu}_{1}\right)+\frac{1}{2}\left(x-\hat{\mu}_{2}\right)^{T} \hat{\Lambda}^{-1}\left(x-\hat{\mu}_{2}\right) \\
& -\frac{1}{2} \log (2 \pi)^{k}|\hat{\Lambda}|+\log \frac{\left|C_{1}\right|}{n}+\frac{1}{2} \log (2 \pi)^{k}|\hat{\Lambda}|-\log \frac{\left|C_{2}\right|}{n} \\
= & -\frac{1}{2}\left(x-\hat{\mu}_{1}\right)^{T} \hat{\Lambda}^{-1}\left(x-\hat{\mu}_{1}\right)+\frac{1}{2}\left(x-\hat{\mu}_{2}\right)^{T} \hat{\Lambda}^{-1}\left(x-\hat{\mu}_{2}\right)+\log \frac{\left|C_{1}\right|}{\left|C_{2}\right|}
\end{aligned}
$$

Now, expand the first two terms.

$$
\begin{aligned}
= & -\frac{1}{2} x^{T} \hat{\Lambda}^{-1} x+\hat{\mu}_{1}^{T} \hat{\Lambda}^{-1} x-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{1}+\frac{1}{2} x^{T} \hat{\Lambda}^{-1} x-\hat{\mu}_{2}^{T} \hat{\Lambda}^{-1} x+\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{2} \\
& +\log \frac{\left|C_{1}\right|}{\left|C_{2}\right|}
\end{aligned}
$$

We can cancel out the two $\frac{1}{2} x^{T} \hat{\Lambda}^{-1} x$.

$$
=\hat{\mu}_{1}^{T} \hat{\Lambda}^{-1} x-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{1}-\hat{\mu}_{2}^{T} \hat{\Lambda}^{-1} x+\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{2}+\log \frac{\left|C_{1}\right|}{\left|C_{2}\right|}
$$

We finally re-arrange to get our desired expression.

$$
=\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} \hat{\Lambda}^{-1} x-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{1}+\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{2}+\log \frac{\left|C_{1}\right|}{\left|C_{2}\right|}
$$

We find that this is equivalent to $\beta^{T} x+\alpha$, where

$$
\begin{gathered}
\beta=\hat{\mu}_{1}-\hat{\mu}_{2} \\
\alpha=-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{1}+\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Lambda}^{-1} \hat{\mu}_{2}+\log \frac{\left|C_{1}\right|}{\left|C_{2}\right|}
\end{gathered}
$$

As a result, this decision boundary is linear.

4 Special Cases

In one case, we have a spherical $\Lambda=\sigma^{2} I$. We see the following decision boundary. First, take our expression from the last section and plug in Λ.

$$
\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} \sigma^{2} I^{-1} x-\frac{1}{2} \hat{\mu}_{1}^{T} \sigma^{2} I^{-1} \hat{\mu}_{1}+\frac{1}{2} \hat{\mu}_{2}^{T} \sigma^{2} I^{-1} \hat{\mu}_{2}=0
$$

Multiply all terms by σ^{2}.

$$
\begin{aligned}
& \left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} x-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\mu}_{1}+\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\mu}_{2}=0 \\
& \left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} x-\frac{1}{2}\left(\hat{\mu}_{1}^{T} \hat{\mu}_{1}-\hat{\mu}_{2}^{T} \hat{\mu}_{2}\right)=0
\end{aligned}
$$

Finally, note that $a^{2}-b^{2}=(a+b)(a-b)$, and combine like terms.

$$
\begin{gathered}
\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} x-\frac{1}{2}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T}\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right)=0 \\
\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T}\left(x-\frac{1}{2}\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right)\right)=0
\end{gathered}
$$

In the second case, we do not have a spherical Λ. Thus, we see the following decision boundary.

$$
\left(\hat{\mu}_{0}-\hat{\mu}_{1}\right)^{T} \Lambda^{-1}\left(x-\frac{1}{2}\left(\hat{\mu}_{0}+\hat{\mu}_{1}\right)\right)=0
$$

Both of these formulations have an intuitive interpretation. We are effectively taking the midpoint of the two means but in a vector space.

