
Regularization
compiled by Alvin Wan from Professor Benjamin Recht’s lecture

Recall that for any problem with prediction error, we have the following trade-off:

• With finite data, we have more variance.

• With a simpler model, we have more bias.

How can we interpolate the two, so that we minimize the costs of both? We can start
off with a simple example, using least squares.

1 Least Squares

Consider the following model for our data, where X is n×d, ~y is n×1, and β is d×1.

X ∼ N (0, β2I)

~y = Xβ + e

We have that our noise e = [ε1 · · · εN ]T is a vector of normally distributed ε ∼
N (0, σ2I). Let us start by restating the least squares objective function. Note that
xi is the ith sample and ith row from X. However, per convention, we will consider
each xi to be a column vector.

minimize
n∑
i=1

(xTi β − yi)2

Now, we consider its optimal solution β̂.

β̂ = (XTX)−1XTy

= (XTX)−1(XT (Xv + e))

= (XTX)−1(XTXv +XT e)

= β + (XTX)−1XT e
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1.1 Bias of Least Squares

We will now compute its bias, which we find to be 0. Now, consider some sample x (a
d× 1 column vector) and corresponding label y = xTβ + ε, a sample and label from
our validation set.

E[ŷ − y] = E[xTi β̂ − y]

First, plug in β̂ = β + (XTX)−1XT e.

E[xT β̂ − y] = E[xT (β + (XTX)−1XT e)− y]

= E[xTβ + xT (XTX)−1XT e− y]

Now, plug in what we have for y = Xβ + e. Below, we use the fact that (XTX)−1 =
X−1X−T . In other words, take the inverse of each matrix and swap the order.

E[xTβ + xT (XTX)−1XT e− y] = E[xTβ + xT (XTX)−1XT e− (xβ + ε)]

= E[xTβ + xT (XTX)−1XT e− xβ − ε]
= E[xT (XTX)−1XT e− ε]

First, by linearity of expectation and the fact that ε is normally distributed around
0, we can apply the following.

E[xT (XTX)−1XT e− ε] = E[xT (XTX)−1XT e]− E[ε]

= E[xT (XTX)−1XT e]

We can consider M = (XTX)−1XT e to be some d × 1 matrix where each entry is a
product of i.i.d. normally-distributed random variables around 0.

E[xT (XTX)−1XT e] = 0
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1.2 Variance of Least Squares

We will now compute the variance of var(ŷ − y). Using the previous part, we know
that ŷ − y reduces to xT (XTX)−1XT e.

var(ŷ − y) = var(xT (XTX)−1XT e)

Remember that the definition of variance states var(ŷ− y) = E[(ŷ− y)2]−E[ŷ− y]2.
Earlier, we showed that E[ŷ − y] = 0, so var(ŷ − y) = E[(ŷ − y)2].

var(ŷ − y) = E[(ŷ − y)2]

= E[(xT (XTX)−1XT e)2]

Since ŷ− y is a scalar, we can represent (ŷ− y)2 as (ŷ− y)(ŷ− y)T . (Remember that
the typical translation of the power of two is (ŷ− y)T (ŷ− y) so that the dot product
yields a scalar.) We also use the fact that (XTX)T = XTX.

E[(xT (XTX)−1XT e)2] = E[(xT (XTX)−1XT e)(xT (XTX)−1XT e)T ]

= E[xT (XTX)−1XT eeTX(XTX)−Tx]

= E[xT (XTX)−1XT eeTX(XTX)−1x]

Given var(e) = E[e2]−E[e]2. Since e ∼ N (0, σ2), E[e]2 = 0 making var(e) = E[e2] =
σ2. We additionally know that e and eeT are independent of all other X and x. By
independence, we can then rewrite:

E[xT (XTX)−1XT eeTX(XTX)−1x] = E[eeT ]E[x(XTX)−1XTX(XTX)−1x]

= σ2E[xT (XTX)−1XTX(XTX)−1x]

= σ2E[xT (XTX)−1x]
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We take XTX ≈ nβ2I. Note that since E[xi] = 0, var(xi) = x2i . This implies that
E[xTx] = E[‖x‖2] = dσ2. Since X ∼ N (0, β2I), E[xTx] = dβ2.

σ2E[xT (XTX)−1x] ≈ σ2E[xT (nβ2I)−1x]

=
σ2

nβ2
E[xTx]

=
σ2

nβ2
(dβ2)

=
σ2d

n

Our variance is thus approximately σ2d
n

. We see that variance thus increases with
the number of features d but decreases with the number of sample points n. Thus,
variance is proportional to the complexity of our model and is inversely related to the
amount of data.

2 Ridge Regression

We now consider another minimization problem, effectively least-squares but with
a l2-norm penalty. We begin by restating the objective function, first in terms of
individual samples and then in matrix form.

minimizew
1

n

n∑
i=1

(wTxi − yi)2 + λ‖w‖2

minimizew
1

n
‖Xw − y‖2 + λ‖w‖2

We know that the solution is the following.

ŵ = (XTX + nλI)−1XTy

In the above, since XTX is always positive semidefinite, XTX + nλI, where n > 0
ensures that XTX + nλI is positive definite and thus invertible.

We now make the following claim: As λ→∞, variance goes to 0 and bias increases.
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2.1 Bias of Ridge Regression

Consider the following example, where as above, we assume 1
n
XTX ≈ β2I. We can

then pre-multiply the objective function by XT . Letting u = 1
β2n

XTy. (In the first
step and in the last step, we tweak the coefficient of our first term assuming that we
simply see according adjustments in our regularization term λ.)

minimizew
1

n
‖Xw − y‖2 + λ‖w‖2 ≈ minimizew

1

n2
‖Xw − y‖2 + λ‖w‖2

≈ minimizew‖
1

n
XTXw − 1

n
XTy‖2 + λ‖w‖2

≈ minimizew‖β2w − 1

n
XTy‖2 + λ‖w‖2

≈ minimizewβ
4‖w − 1

β2n
XTy‖2 + λ‖w‖2

≈ minimizewβ
2‖w − u‖2 + λ‖w‖2

As in the scenario for least squares, we will again assume that X ∼ N (0, σ2) and
y = βTx+ e, where e = [ε1 · · · εn]T . We have that the solution to the above is

ŵ = (
1

1 + λ/β2
)u

2.2 Variance of Ridge Regression

We take our derivation for the variance of least squares, and get the following. From
the above, since 1

n
XTX ≈ β2I, then XTX ≈ nβ2I.

5



E[ŷ − y] = E[xT (XTX + λI)−1XT eeTX(XTX + λI)−1x]

= σ2E[xT (XTX + λI)−1XTX(XTX + λI)−1x]

≈ nβ2σ2E[xT (XTX + λI)−1(XTX + λI)−1x]

≈ nβ2

(nβ2 + λI)2
σ2E[xTx]

≈ nβ2

(nβ2 + λI)2
σ2dβ2

≈ n2β4

(nβ2 + λI)2
σ2d

n

≈ (
nβ2

nβ2 + λI
)2
σ2d

n

We find that we can have small variance even when we have many more features than
samples d > n, by adjusting λ accordingly.

3 Lasso

Lasso stands for ”Least Absolute Shrinkage and Selection Operator” and often offers
sparser solutions. We now consider a new objective function, where the penalty is an
l1-norm.

n∑
i=1

(wTxi − yi)2 + λ‖w‖1

With lasso, we make the following weight update:

wk+1 = shrink(wk − α∇f(wk))

where we have the following definition of shrink.

shrink(v)i =


vi − αλ vi > αλ

0 −αλ < vi < αλ

vi + αλ vi < −αλ
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