Regularization

compiled by Alvin Wan from Professor Benjamin Recht's lecture
Recall that for any problem with prediction error, we have the following trade-off:

- With finite data, we have more variance.
- With a simpler model, we have more bias.

How can we interpolate the two, so that we minimize the costs of both? We can start off with a simple example, using least squares.

1 Least Squares

Consider the following model for our data, where X is $n \times d, \vec{y}$ is $n \times 1$, and β is $d \times 1$.

$$
\begin{gathered}
X \sim \mathscr{N}\left(0, \beta^{2} I\right) \\
\vec{y}=X \beta+e
\end{gathered}
$$

We have that our noise $e=\left[\epsilon_{1} \cdots \epsilon_{N}\right]^{T}$ is a vector of normally distributed $\epsilon \sim$ $\mathscr{N}\left(0, \sigma^{2} I\right)$. Let us start by restating the least squares objective function. Note that x_{i} is the i th sample and i th row from X. However, per convention, we will consider each x_{i} to be a column vector.

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(x_{i}^{T} \beta-y_{i}\right)^{2}
$$

Now, we consider its optimal solution $\hat{\beta}$.

$$
\begin{aligned}
\hat{\beta} & =\left(X^{T} X\right)^{-1} X^{T} y \\
& =\left(X^{T} X\right)^{-1}\left(X^{T}(X v+e)\right) \\
& =\left(X^{T} X\right)^{-1}\left(X^{T} X v+X^{T} e\right) \\
& =\beta+\left(X^{T} X\right)^{-1} X^{T} e
\end{aligned}
$$

1.1 Bias of Least Squares

We will now compute its bias, which we find to be 0 . Now, consider some sample x (a $d \times 1$ column vector) and corresponding label $y=x^{T} \beta+\epsilon$, a sample and label from our validation set.

$$
\mathbb{E}[\hat{y}-y]=\mathbb{E}\left[x_{i}^{T} \hat{\beta}-y\right]
$$

First, plug in $\hat{\beta}=\beta+\left(X^{T} X\right)^{-1} X^{T} e$.

$$
\begin{aligned}
\mathbb{E}\left[x^{T} \hat{\beta}-y\right] & =\mathbb{E}\left[x^{T}\left(\beta+\left(X^{T} X\right)^{-1} X^{T} e\right)-y\right] \\
& =\mathbb{E}\left[x^{T} \beta+x^{T}\left(X^{T} X\right)^{-1} X^{T} e-y\right]
\end{aligned}
$$

Now, plug in what we have for $y=X \beta+e$. Below, we use the fact that $\left(X^{T} X\right)^{-1}=$ $X^{-1} X^{-T}$. In other words, take the inverse of each matrix and swap the order.

$$
\begin{aligned}
\mathbb{E}\left[x^{T} \beta+x^{T}\left(X^{T} X\right)^{-1} X^{T} e-y\right] & =\mathbb{E}\left[x^{T} \beta+x^{T}\left(X^{T} X\right)^{-1} X^{T} e-(x \beta+\epsilon)\right] \\
& =\mathbb{E}\left[x^{T} \beta+x^{T}\left(X^{T} X\right)^{-1} X^{T} e-x \beta-\epsilon\right] \\
& =\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e-\epsilon\right]
\end{aligned}
$$

First, by linearity of expectation and the fact that ϵ is normally distributed around 0 , we can apply the following.

$$
\begin{aligned}
\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e-\epsilon\right] & =\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right]-\mathbb{E}[\epsilon] \\
& =\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right]
\end{aligned}
$$

We can consider $M=\left(X^{T} X\right)^{-1} X^{T} e$ to be some $d \times 1$ matrix where each entry is a product of i.i.d. normally-distributed random variables around 0 .

$$
\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right]=0
$$

1.2 Variance of Least Squares

We will now compute the variance of $\operatorname{var}(\hat{y}-y)$. Using the previous part, we know that $\hat{y}-y$ reduces to $x^{T}\left(X^{T} X\right)^{-1} X^{T} e$.

$$
\operatorname{var}(\hat{y}-y)=\operatorname{var}\left(x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right)
$$

Remember that the definition of variance states $\operatorname{var}(\hat{y}-y)=\mathbb{E}\left[(\hat{y}-y)^{2}\right]-\mathbb{E}[\hat{y}-y]^{2}$. Earlier, we showed that $\mathbb{E}[\hat{y}-y]=0$, so $\operatorname{var}(\hat{y}-y)=\mathbb{E}\left[(\hat{y}-y)^{2}\right]$.

$$
\begin{aligned}
\operatorname{var}(\hat{y}-y) & =\mathbb{E}\left[(\hat{y}-y)^{2}\right] \\
& =\mathbb{E}\left[\left(x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right)^{2}\right]
\end{aligned}
$$

Since $\hat{y}-y$ is a scalar, we can represent $(\hat{y}-y)^{2}$ as $(\hat{y}-y)(\hat{y}-y)^{T}$. (Remember that the typical translation of the power of two is $(\hat{y}-y)^{T}(\hat{y}-y)$ so that the dot product yields a scalar.) We also use the fact that $\left(X^{T} X\right)^{T}=X^{T} X$.

$$
\begin{aligned}
\mathbb{E}\left[\left(x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right)^{2}\right] & =\mathbb{E}\left[\left(x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right)\left(x^{T}\left(X^{T} X\right)^{-1} X^{T} e\right)^{T}\right] \\
& =\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e e^{T} X\left(X^{T} X\right)^{-T} x\right] \\
& =\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e e^{T} X\left(X^{T} X\right)^{-1} x\right]
\end{aligned}
$$

Given $\operatorname{var}(e)=\mathbb{E}\left[e^{2}\right]-\mathbb{E}[e]^{2}$. Since $e \sim \mathscr{N}\left(0, \sigma^{2}\right), \mathbb{E}[e]^{2}=0$ making $\operatorname{var}(e)=\mathbb{E}\left[e^{2}\right]=$ σ^{2}. We additionally know that e and $e e^{T}$ are independent of all other X and x. By independence, we can then rewrite:

$$
\begin{aligned}
\mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} e e^{T} X\left(X^{T} X\right)^{-1} x\right] & =\mathbb{E}\left[e e^{T}\right] \mathbb{E}\left[x\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1} x\right] \\
& =\sigma^{2} \mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1} x\right] \\
& =\sigma^{2} \mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} x\right]
\end{aligned}
$$

We take $X^{T} X \approx n \beta^{2} I$. Note that since $\mathbb{E}\left[x_{i}\right]=0, \operatorname{var}\left(x_{i}\right)=x_{i}^{2}$. This implies that $\mathbb{E}\left[x^{T} x\right]=\mathbb{E}\left[\|x\|^{2}\right]=d \sigma^{2}$. Since $X \sim \mathscr{N}\left(0, \beta^{2} I\right), \mathbb{E}\left[x^{T} x\right]=d \beta^{2}$.

$$
\begin{aligned}
\sigma^{2} \mathbb{E}\left[x^{T}\left(X^{T} X\right)^{-1} x\right] & \approx \sigma^{2} \mathbb{E}\left[x^{T}\left(n \beta^{2} I\right)^{-1} x\right] \\
& =\frac{\sigma^{2}}{n \beta^{2}} \mathbb{E}\left[x^{T} x\right] \\
& =\frac{\sigma^{2}}{n \beta^{2}}\left(d \beta^{2}\right) \\
& =\frac{\sigma^{2} d}{n}
\end{aligned}
$$

Our variance is thus approximately $\frac{\sigma^{2} d}{n}$. We see that variance thus increases with the number of features d but decreases with the number of sample points n. Thus, variance is proportional to the complexity of our model and is inversely related to the amount of data.

2 Ridge Regression

We now consider another minimization problem, effectively least-squares but with a l2-norm penalty. We begin by restating the objective function, first in terms of individual samples and then in matrix form.

$$
\begin{gathered}
\operatorname{minimize}_{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda\|w\|^{2} \\
\operatorname{minimize}_{w} \frac{1}{n}\|X w-y\|^{2}+\lambda\|w\|^{2}
\end{gathered}
$$

We know that the solution is the following.

$$
\hat{w}=\left(X^{T} X+n \lambda I\right)^{-1} X^{T} y
$$

In the above, since $X^{T} X$ is always positive semidefinite, $X^{T} X+n \lambda I$, where $n>0$ ensures that $X^{T} X+n \lambda I$ is positive definite and thus invertible.

We now make the following claim: As $\lambda \rightarrow \infty$, variance goes to 0 and bias increases.

2.1 Bias of Ridge Regression

Consider the following example, where as above, we assume $\frac{1}{n} X^{T} X \approx \beta^{2} I$. We can then pre-multiply the objective function by X^{T}. Letting $u=\frac{1}{\beta^{2} n} X^{T} y$. (In the first step and in the last step, we tweak the coefficient of our first term assuming that we simply see according adjustments in our regularization term λ.)

$$
\begin{aligned}
\operatorname{minimize}_{w} \frac{1}{n}\|X w-y\|^{2}+\lambda\|w\|^{2} & \approx \operatorname{minimize}_{w} \frac{1}{n^{2}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
& \approx \operatorname{minimize}_{w}\left\|\frac{1}{n} X^{T} X w-\frac{1}{n} X^{T} y\right\|^{2}+\lambda\|w\|^{2} \\
& \approx \operatorname{minimize}_{w}\left\|\beta^{2} w-\frac{1}{n} X^{T} y\right\|^{2}+\lambda\|w\|^{2} \\
& \approx \operatorname{minimize}_{w} \beta^{4}\left\|w-\frac{1}{\beta^{2} n} X^{T} y\right\|^{2}+\lambda\|w\|^{2} \\
& \approx \operatorname{minimize}_{w} \beta^{2}\|w-u\|^{2}+\lambda\|w\|^{2}
\end{aligned}
$$

As in the scenario for least squares, we will again assume that $X \sim \mathscr{N}\left(0, \sigma^{2}\right)$ and $y=\beta^{T} x+e$, where $e=\left[\epsilon_{1} \cdots \epsilon_{n}\right]^{T}$. We have that the solution to the above is

$$
\hat{w}=\left(\frac{1}{1+\lambda / \beta^{2}}\right) u
$$

2.2 Variance of Ridge Regression

We take our derivation for the variance of least squares, and get the following. From the above, since $\frac{1}{n} X^{T} X \approx \beta^{2} I$, then $X^{T} X \approx n \beta^{2} I$.

$$
\begin{aligned}
\mathbb{E}[\hat{y}-y] & =\mathbb{E}\left[x^{T}\left(X^{T} X+\lambda I\right)^{-1} X^{T} e e^{T} X\left(X^{T} X+\lambda I\right)^{-1} x\right] \\
& =\sigma^{2} \mathbb{E}\left[x^{T}\left(X^{T} X+\lambda I\right)^{-1} X^{T} X\left(X^{T} X+\lambda I\right)^{-1} x\right] \\
& \approx n \beta^{2} \sigma^{2} \mathbb{E}\left[x^{T}\left(X^{T} X+\lambda I\right)^{-1}\left(X^{T} X+\lambda I\right)^{-1} x\right] \\
& \approx \frac{n \beta^{2}}{\left(n \beta^{2}+\lambda I\right)^{2}} \sigma^{2} \mathbb{E}\left[x^{T} x\right] \\
& \approx \frac{n \beta^{2}}{\left(n \beta^{2}+\lambda I\right)^{2}} \sigma^{2} d \beta^{2} \\
& \approx \frac{n^{2} \beta^{4}}{\left(n \beta^{2}+\lambda I\right)^{2}} \frac{\sigma^{2} d}{n} \\
& \approx\left(\frac{n \beta^{2}}{n \beta^{2}+\lambda I}\right)^{2} \frac{\sigma^{2} d}{n}
\end{aligned}
$$

We find that we can have small variance even when we have many more features than samples $d>n$, by adjusting λ accordingly.

3 Lasso

Lasso stands for "Least Absolute Shrinkage and Selection Operator" and often offers sparser solutions. We now consider a new objective function, where the penalty is an 11-norm.

$$
\sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
$$

With lasso, we make the following weight update:

$$
w_{k+1}=\operatorname{shrink}\left(w_{k}-\alpha \nabla f\left(w_{k}\right)\right)
$$

where we have the following definition of shrink.

$$
\operatorname{shrink}(v)_{i}= \begin{cases}v_{i}-\alpha \lambda & v_{i}>\alpha \lambda \\ 0 & -\alpha \lambda<v_{i}<\alpha \lambda \\ v_{i}+\alpha \lambda & v_{i}<-\alpha \lambda\end{cases}
$$

