Quiz 4

04 Gaussian Discriminant Analysis, Decompositions

by Alvin Wan . alvinwan.com/cs189

For the multiple choice questions, select *all* that apply.

1 Gaussian Discriminant Analysis

The following algorithms will yield a decision boundary even with data that is not linearly separable.

- (a) Linear Discriminant Analysis
- (b) Quadratic Discriminant Analysis
- (c) Perceptrons
- (d) Soft-Margin Support Vector Machine

The following always produces a linear decision boundary, regardless of the data provided to it.

- (a) Linear Discriminant Analysis
- (b) Quadratic Discriminant Analysis
- (c) Perceptrons
- (d) Hard-Margin Support Vector Machine

2 Decompositions

Prove that if v_i with eigenvalue λ_i is an eigenvector for a symmetric A, it is also an eigenvector for the outer product of $A - \lambda I$.

Consider a real, symmetric A, which admits an eigendecomposition. Prove that $||A||_F = ||\lambda||_2$, where $\lambda = [\lambda_1, \lambda_2, \ldots, \lambda_n]^T$ for eigenvalues λ_i of A.