04 Gaussian Discriminant Analysis, Decompositions

by Alvin Wan . alvinwan.com/cs189

For the multiple choice questions, select all that apply.

1 Gaussian Discriminant Analysis

The following algorithms will yield a decision boundary even with data that is not linearly separable.
(a) Linear Discriminant Analysis
(b) Quadratic Discriminant Analysis
(c) Perceptrons
(d) Soft-Margin Support Vector Machine

The following always produces a linear decision boundary, regardless of the data provided to it.
(a) Linear Discriminant Analysis
(b) Quadratic Discriminant Analysis
(c) Perceptrons
(d) Hard-Margin Support Vector Machine

2 Decompositions

Prove that if v_{i} with eigenvalue λ_{i} is an eigenvector for a symmetric A, it is also an eigenvector for the outer product of $A-\lambda I$.

Consider a real, symmetric A, which admits an eigendecomposition. Prove that $\|A\|_{F}=\|\lambda\|_{2}$, where $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]^{T}$ for eigenvalues λ_{i} of A.

