Quiz 4 04 Gaussian Discriminant Analysis, Decompositions

by Alvin Wan . alvinwan.com/cs189

For the multiple choice questions, select *all* that apply.

1 Gaussian Discriminant Analysis

The following algorithms will yield a decision boundary even with data that is not linearly separable.

- (a) Linear Discriminant Analysis
- (b) Quadratic Discriminant Analysis
- (c) Perceptrons
- (d) Soft-Margin Support Vector Machine

Solution: All but c, which will not terminate if the data is not linearly separable. Although LDA produces a linear decision boundary, it simply computes a value.

The following always produces a linear decision boundary, regardless of the data provided to it.

- (a) Linear Discriminant Analysis
- (b) Quadratic Discriminant Analysis
- (c) Perceptrons
- (d) Hard-Margin Support Vector Machine

Solution: Only the a) is guaranteed to produce a linear decision boundary. b) produces quadric surfaces and d) potentially creates extremely complex decision boundaries. c) might not converge, thus not producing a decision boundary at all, much less a linear one.

2 Decompositions

Prove that if v_i with eigenvalue λ_i is an eigenvector for a symmetric A, it is also an eigenvector for the outer product of $A - \lambda I$.

Solution:

$$(A - \lambda I)(A - \lambda I)^T v = (AA^T - 2\lambda A + \lambda^2)v$$
$$= AAv - 2\lambda Av + \lambda^2 v$$
$$= \lambda_i^2 v - 2\lambda_i \lambda v + \lambda^2 v$$
$$= (\lambda_i - \lambda)^2 v$$

Consider a real, symmetric A, which admits an eigendecomposition. Prove that $||A||_F = ||\lambda||_2$, where $\lambda = [\lambda_1, \lambda_2, \ldots, \lambda_n]^T$ for eigenvalues λ_i of A.

Solution: We square both sides. Consider the eigendecomposition of $A = PDP^{T}$.

$$\|A\|_F^2 = \operatorname{Tr}(A^T A)$$

= $\operatorname{Tr}(PD^2P^T)$
= $\operatorname{Tr}(P^TPD^2)$
= $\operatorname{Tr}(D^2)$
= $\sum_i D_{ii}^2$
= $\sum_i \lambda_i^2$
= $\|\lambda\|_2^2$