02 Perceptrons

by Alvin Wan

Treat this as an exam situation. You will be given 5 minutes to complete this quiz.

1 L2 Norm

Prove that the L2 norm is unitary invariant. In other words, the L2 norm of a vector does not changed even after multiplying by some orthogonal matrix U.

Solution: Consider an orthonormal matrix $U \in \mathbb{R}^{d \times d}$. Recall that $U^{T} U=I$ since the column vectors of U are by definition linearly independent and normalized. This means all $i \neq j, u_{i}^{T} u_{j}=0$ and all $i=j, u_{i}^{T} u_{j}=1$. Our goal is to show that for all vectors $v \in \mathbb{R}^{d},\|U v\|_{2}^{2}=\|v\|_{2}^{2}$.

$$
\|U v\|_{2}^{2}=(U v)^{T}(U v)=v^{T} U^{T} U v=v^{T} v=\|v\|_{2}^{2}
$$

2 Distance to Hyperplane

For a point $x_{i} \in \mathbb{R}^{d}$, prove that the distance to a hyperplane $H=\left\{x: w^{T} x+\alpha\right\}$ is

$$
\frac{1}{\|w\|_{2}}\left(w^{T} x_{i}+\alpha\right)
$$

Solution: This is proved in Note 2, restated as Theorem 1 in Section 1. Click below to access it:
aaalv.in/cs189/sp17/notes/n2.pdf

