
Note 7

07 Decompositions

by Alvin Wan

In this section, we consider two matrix decompositions. Before delving into either,
we will need some terminology. We note the following definitions:

Matrix A is positive semi-definite (PSD) if the following three equivalent condi-
tions hold:

(1) quadratic form is non-negative, ∀x, xTAx ≥ 0

(2) all eigenvalues of A are non-negative, ∀i, λi(A) ≥ 0

(3) a Cholesky decomposition exists, ∃B,A = BTB

Note that PSD also implies eigenvalues and singular values of A are identical. We
will prove this last fact in section 3.

Proof : We need to show that all three conditions are equivalent. To achieve
this, we

(1) =⇒ (2): Take x = v of A. Then, vTAv = vTλv = λ‖v‖22 ≥ 0 iff λ ≥ 0.

(2) =⇒ (3): Take the eigen decomposition of A, which is discussed below: A =
PDP T = PD1/2D1/2P T = (D1/2P T )T (D1/2P T ) = BTB, where B = D1/2P T .

(3) =⇒ (1): ∀x, xTAx = xTBTBx = (Bx)TBx = ‖Bx‖22 ≥ 0

Matrix A is positive definite (PD) if ∀x, xTAx > 0; this is iff all eigenvalues of A
are positive. Proof of this statement is nearly identical to the proof above.

1 Eigenvalue decomposition (EVD)

This decomposition may be more familiar as “diagonalization” or “spectral decom-
position”. In any case, we decompose a matrix A into its eigenvectors vi and corre-
sponding eigenvalues λi such that Avi = λvi.
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1.1 Intuition Review

This formulation tells us that A, as an operator, scales vi by some scalar quantity,
positive or negative - in effect extending the vector or flipping it over the origin.

The spectral theorem states that every real, symmetric n× n matrix has n eigen-
vectors s.t. ∀i 6= j, vTi vj = 0. (See proof.) This has a few implications:

1. The characteristic polynomial of any matrix and thus its eigenvalues - including
their multiplicities - are unique for each matrix.

2. There may be more than n eigenvectors; we choose a set of orthogonal vectors
that span the eigenbasis.

Equipped with the spectral theorem, we can now construct the decomposition. Con-
sider eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn with corresponding eigenvectors v1, v2 . . . vn for
matrix A, where D = diag(λ1, λ2 . . . , λn) and vi form the column vectors of P . We
then have that A = PDP−1. Note that if all vi are orthonormal, or where ‖vi‖22 = 1
and ∀i 6= j, vTi vj = 0, then P TP = I, implying P T = P−1. Thus for orthonormal vi,

A = PDP T

Theorem If λ is an eigenvalue of A, then λk is an eigenvalue of Ak.

Proof : Observe A2vi = AAvi = A(λivi) = λiAvi = λ2i vi. Apply inductively to
obtain result.

Applying the spectral theorem, we see the following. Note P TP = I.

Ak = (PDP T )k = PDP TPDP T · · ·PDP T = PDkP

With this, we know for A = M1/2, we have A2 = PD2P T = M , so M = PD1/2P T .

Theorem If A is invertible, then eigenvector vi with eigenvalue λi of A is also an
eigenvector of A−1 with eigenvalue λ−1i .

Proof : Avi = λivi =⇒ vi = λiA
−1vi =⇒ λ−1i vi = A−1vi

With the spectral theorem, A−1 = (PDP T )−1 = PD−1P T .
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1.2 Ellipsoids

First, consider the set all vectors that have length 1. This set gives rise to the unit
ball.

{x : ‖x‖22 ≤ 1}
Now, take the quadratic form xTAx, where A is positive semidefinite (PSD). We will
show that the set of all vectors such that xTAx has length 1 gives rise to a distortion
of the unit ball, or the ellipsoid.

{x : xTAx ≤ 1}
We can take the cholesky decomposition of A = BTB, which was proved to exist in
the exposition for this note. We then have the following.

xTAx = xTBTBx = (Bx)T (Bx) = ‖Bx‖22
.

Consider an eigenvector, eigenvalue pair vB, λB of B. Say x = vB. We then show
that the quadratic form xTAx has length 1√

λB
in the direction of x = vB.

xTAx = ‖Bx‖22 = ‖BvB‖22 = ‖λBvB‖22 = λ2B‖vB‖22
To find the boundary of our shape, we take xTAx = λ2B‖vB‖22 = 1 instead of an
inequality. The last part of the line above tells us that

‖vB‖2 =
1

λB

We need to relate the eigenvalue of B, λB, back to the eigenvalue of A. So, take the
eigen decomposition of B = PBDBP

T
B and A = PADAP

T
A .

A = BTB = PBDBP
T
BPBDBP

T
B = PBD

2
BP

T
B = PADAP

T
A

Thus, the eigenvalues of B are squared the eigenvalues of A, and the eigenvectors of B
are identical to the eigenvectors of A. Then, we have λ2B = λA, implying λB =

√
λA.

This gives us our final result, where λi is the ith largest eigenvalue of A and vi is the
corresponding eigenvector.

‖vi‖2 =
1√
λi

Thus, the eigenvalues of A determine the length along each eigenvector for an ellipsoid
xTAx.

3



2 Singular Value Decomposition (SVD)
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