Note 7

07 Decompositions
by Alvin Wan

In this section, we consider two matrix decompositions. Before delving into either,
we will need some terminology. We note the following definitions:

Matrix A is positive semi-definite (PSD) if the following three equivalent condi-
tions hold:

(1) quadratic form is non-negative, Vz,z” Az > 0
(2) all eigenvalues of A are non-negative, Vi, \;(A) >0

(3) a Cholesky decomposition exists, 3B, A = BT B

Note that PSD also implies eigenvalues and singular values of A are identical. We
will prove this last fact in section 3.

Proof: We need to show that all three conditions are equivalent. To achieve
this, we

(1) = (2): Take x = v of A. Then, v Av = vT v = A||v||3 > 0 iff A > 0.

(2) = (3): Take the eigen decomposition of A, which is discussed below: A =
PDPT = PDV2D2PT — (DV/2PT)T(DV2PT) = BT B, where B = D'/2PT.

3) = (1): Vo, 2T Az = 2" BT Bz = (Bx)"Bx = ||Bz||? > 0
B

Matrix A is positive definite (PD) if Vo, 2" Az > 0; this is iff all eigenvalues of A
are positive. Proof of this statement is nearly identical to the proof above.

1 Eigenvalue decomposition (EVD)

This decomposition may be more familiar as “diagonalization” or “spectral decom-
position”. In any case, we decompose a matrix A into its eigenvectors v; and corre-
sponding eigenvalues \; such that Av; = A\v;.
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1.1 Intuition Review

This formulation tells us that A, as an operator, scales v; by some scalar quantity,
positive or negative - in effect extending the vector or flipping it over the origin.

The spectral theorem states that every real, symmetric n X n matrix has n eigen-
vectors s.t. Vi # j,v]v; = 0. (See proof.) This has a few implications:

1. The characteristic polynomial of any matrix and thus its eigenvalues - including
their multiplicities - are unique for each matrix.

2. There may be more than n eigenvectors; we choose a set of orthogonal vectors
that span the eigenbasis.

Equipped with the spectral theorem, we can now construct the decomposition. Con-
sider eigenvalues \; > Ay > --- > )\, with corresponding eigenvectors vy, vs ... v, for
matrix A, where D = diag(A1, A\2...,\,) and v; form the column vectors of P. We
then have that A = PDP~!. Note that if all v; are orthonormal, or where [|v;||3 = 1
and Vi # j,v]v; = 0, then PTP = I, implying P” = P~'. Thus for orthonormal v;,

A= PDPT

Theorem If \ is an eigenvalue of A, then A\* is an eigenvalue of A*.

Proof: Observe A%v; = AAv; = A(\wv;) = N Av; = Mv;. Apply inductively to
obtain result.

Applying the spectral theorem, we see the following. Note PP = I.

A¥ = (PDPTY = PDPTPDPT ... PDPT = PD*P

With this, we know for A = M2, we have A> = PD?*PT = M, so M = PD'/?PT.

Theorem If A is invertible, then eigenvector v; with eigenvalue A; of A is also an
eigenvector of A~! with eigenvalue A;*.

Proof: Av, = \jv;, — v; = )\Z-A_lvi — )\i_l?]i = A_l?]i
With the spectral theorem, A~! = (PDPT)~t = pD1PT.



http://www-math.mit.edu/~dav/spectral.pdf

1.2 Ellipsoids

First, consider the set all vectors that have length 1. This set gives rise to the unit
ball.

{: |ll3 < 13

Now, take the quadratic form 27 Az, where A is positive semidefinite (PSD). We will
show that the set of all vectors such that 27 Az has length 1 gives rise to a distortion
of the unit ball, or the ellipsoid.

{z:2TAx <1}

We can take the cholesky decomposition of A = B” B, which was proved to exist in
the exposition for this note. We then have the following.

2’ Ar = 2" BY Bx = (Bx)" (Bx) = || Bz||3

Consider an eigenvector, eigenvalue pair vg, Ag of B. Say x = vg. We then show
that the quadratic form 27 Az has length \/% in the direction of z = vg.

o' Az = || Bzl = | Bus|; = [IAsvsll3 = Agllvsll2

To find the boundary of our shape, we take 27 Ax = \%||vp||3 = 1 instead of an
inequality. The last part of the line above tells us that

v = —_—
Bl|2 >\B

We need to relate the eigenvalue of B, Ag, back to the eigenvalue of A. So, take the
eigen decomposition of B = PBDBPg and A = PADAPE.

A= B"B = PgDgP}LPyDpPL = PgD4PL = PyDP¥

Thus, the eigenvalues of B are squared the eigenvalues of A, and the eigenvectors of B
are identical to the eigenvectors of A. Then, we have \% = A4, implying A\p = v/A4.
This gives us our final result, where ); is the ith largest eigenvalue of A and v; is the
corresponding eigenvector.

oille = ——
Villa = —=
2 N

Thus, the eigenvalues of A determine the length along each eigenvector for an ellipsoid
T
xt Ax.



2 Singular Value Decomposition (SVD)
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