Note 7

07 Decompositions

by Alvin Wan

In this section, we consider two matrix decompositions. Before delving into either, we will need some terminology. We note the following definitions:

Matrix A is positive semi-definite (PSD) if the following three equivalent conditions hold:
(1) quadratic form is non-negative, $\forall x, x^{T} A x \geq 0$
(2) all eigenvalues of A are non-negative, $\forall i, \lambda_{i}(A) \geq 0$
(3) a Cholesky decomposition exists, $\exists B, A=B^{T} B$

Note that PSD also implies eigenvalues and singular values of A are identical. We will prove this last fact in section 3 .

Proof: We need to show that all three conditions are equivalent. To achieve this, we
(1) $\Longrightarrow(2)$: Take $x=v$ of A. Then, $v^{T} A v=v^{T} \lambda v=\lambda\|v\|_{2}^{2} \geq 0$ iff $\lambda \geq 0$.
$(2) \Longrightarrow(3)$: Take the eigen decomposition of A, which is discussed below: $A=$ $P D P^{T}=P D^{1 / 2} D^{1 / 2} P^{T}=\left(D^{1 / 2} P^{T}\right)^{T}\left(D^{1 / 2} P^{T}\right)=B^{T} B$, where $B=D^{1 / 2} P^{T}$.
$(3) \Longrightarrow(1): \forall x, x^{T} A x=x^{T} B^{T} B x=(B x)^{T} B x=\|B x\|_{2}^{2} \geq 0$

Matrix A is positive definite (PD) if $\forall x, x^{T} A x>0$; this is iff all eigenvalues of A are positive. Proof of this statement is nearly identical to the proof above.

1 Eigenvalue decomposition (EVD)

This decomposition may be more familiar as "diagonalization" or "spectral decomposition". In any case, we decompose a matrix A into its eigenvectors v_{i} and corresponding eigenvalues λ_{i} such that $A v_{i}=\lambda v_{i}$.

1.1 Intuition Review

This formulation tells us that A, as an operator, scales v_{i} by some scalar quantity, positive or negative - in effect extending the vector or flipping it over the origin.

The spectral theorem states that every real, symmetric $n \times n$ matrix has n eigenvectors s.t. $\forall i \neq j, v_{i}^{T} v_{j}=0$. (See proof.) This has a few implications:

1. The characteristic polynomial of any matrix and thus its eigenvalues - including their multiplicities - are unique for each matrix.
2. There may be more than n eigenvectors; we choose a set of orthogonal vectors that span the eigenbasis.

Equipped with the spectral theorem, we can now construct the decomposition. Consider eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ with corresponding eigenvectors $v_{1}, v_{2} \ldots v_{n}$ for matrix A, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}\right)$ and v_{i} form the column vectors of P. We then have that $A=P D P^{-1}$. Note that if all v_{i} are orthonormal, or where $\left\|v_{i}\right\|_{2}^{2}=1$ and $\forall i \neq j, v_{i}^{T} v_{j}=0$, then $P^{T} P=I$, implying $P^{T}=P^{-1}$. Thus for orthonormal v_{i},

$$
A=P D P^{T}
$$

Theorem If λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k}.
Proof: Observe $A^{2} v_{i}=A A v_{i}=A\left(\lambda_{i} v_{i}\right)=\lambda_{i} A v_{i}=\lambda_{i}^{2} v_{i}$. Apply inductively to obtain result.
Applying the spectral theorem, we see the following. Note $P^{T} P=I$.

$$
A^{k}=\left(P D P^{T}\right)^{k}=P D P^{T} P D P^{T} \cdots P D P^{T}=P D^{k} P
$$

With this, we know for $A=M^{1 / 2}$, we have $A^{2}=P D^{2} P^{T}=M$, so $M=P D^{1 / 2} P^{T}$.
Theorem If A is invertible, then eigenvector v_{i} with eigenvalue λ_{i} of A is also an eigenvector of A^{-1} with eigenvalue λ_{i}^{-1}.

Proof: $A v_{i}=\lambda_{i} v_{i} \Longrightarrow v_{i}=\lambda_{i} A^{-1} v_{i} \Longrightarrow \lambda_{i}^{-1} v_{i}=A^{-1} v_{i}$
With the spectral theorem, $A^{-1}=\left(P D P^{T}\right)^{-1}=P D^{-1} P^{T}$.

1.2 Ellipsoids

First, consider the set all vectors that have length 1. This set gives rise to the unit ball.

$$
\left\{x:\|x\|_{2}^{2} \leq 1\right\}
$$

Now, take the quadratic form $x^{T} A x$, where A is positive semidefinite (PSD). We will show that the set of all vectors such that $x^{T} A x$ has length 1 gives rise to a distortion of the unit ball, or the ellipsoid.

$$
\left\{x: x^{T} A x \leq 1\right\}
$$

We can take the cholesky decomposition of $A=B^{T} B$, which was proved to exist in the exposition for this note. We then have the following.

$$
x^{T} A x=x^{T} B^{T} B x=(B x)^{T}(B x)=\|B x\|_{2}^{2}
$$

Consider an eigenvector, eigenvalue pair v_{B}, λ_{B} of B. Say $x=v_{B}$. We then show that the quadratic form $x^{T} A x$ has length $\frac{1}{\sqrt{\lambda_{B}}}$ in the direction of $x=v_{B}$.

$$
x^{T} A x=\|B x\|_{2}^{2}=\left\|B v_{B}\right\|_{2}^{2}=\left\|\lambda_{B} v_{B}\right\|_{2}^{2}=\lambda_{B}^{2}\left\|v_{B}\right\|_{2}^{2}
$$

To find the boundary of our shape, we take $x^{T} A x=\lambda_{B}^{2}\left\|v_{B}\right\|_{2}^{2}=1$ instead of an inequality. The last part of the line above tells us that

$$
\left\|v_{B}\right\|_{2}=\frac{1}{\lambda_{B}}
$$

We need to relate the eigenvalue of B, λ_{B}, back to the eigenvalue of A. So, take the eigen decomposition of $B=P_{B} D_{B} P_{B}^{T}$ and $A=P_{A} D_{A} P_{A}^{T}$.

$$
A=B^{T} B=P_{B} D_{B} P_{B}^{T} P_{B} D_{B} P_{B}^{T}=P_{B} D_{B}^{2} P_{B}^{T}=P_{A} D_{A} P_{A}^{T}
$$

Thus, the eigenvalues of B are squared the eigenvalues of A, and the eigenvectors of B are identical to the eigenvectors of A. Then, we have $\lambda_{B}^{2}=\lambda_{A}$, implying $\lambda_{B}=\sqrt{\lambda_{A}}$. This gives us our final result, where λ_{i} is the i th largest eigenvalue of A and v_{i} is the corresponding eigenvector.

$$
\left\|v_{i}\right\|_{2}=\frac{1}{\sqrt{\lambda_{i}}}
$$

Thus, the eigenvalues of A determine the length along each eigenvector for an ellipsoid $x^{T} A x$.

2 Singular Value Decomposition (SVD)

