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1 Overview

The outline for our algorithm is the following: We take in an input X, which is d × n in
dimension r.

1. Take Xc = [x1 − µx, x2 − µx, . . . xn − µx], µx = 1
n

∑n
i=1 xi.

2. Compute SVD of Xc = USV T

3. Return X̂ = SrV
T
r , Ur, µx

We will explore 3 different views of PCA, showing how each approach gives us the same
result: the maximum eigenvalue and its corresponding eigenvector. In the last section, we
will then explore an application of PCA to Latent Semantic Indexing (or Latent Factor
Analysis).

View 1 : Maximizing Variance

The first view is finding maximum variance. How do we find the direction of maximum
variance? Our goal is to find a u ∈ Rn such that the sample variance of {uTx1, uTx2 . . . uTxn}
is maximized. Assuming that our data is de-meaned, our objective function is the following

Maximizeu:‖u‖2=1var(uTxi)

= Maximizeu:‖u‖2=1
1

n

n∑
i=1

(uTxi)
2

= Maximizeu:‖u‖2=1
1

n

n∑
i=1

uTxix
T
i u

= Maximizeu:‖u‖2=1u
T (

1

n

n∑
i=1

xix
T
i )u

= Maximizeu:‖u‖2=1
1

n
uTXXTu
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Why is u normalized? When u is normalized, uTxi corresponds to the projection of x onto u
with direction u. Why is X de-meaned? Only then is XXT the covariance matrix Σ. Recall
that the entries along the diagonal of Σ take the form cov(xi, xi) = var(xi). Additionally, if
we do not de-mean, the first eigenvector will point to the mean.

Take S = XXT . Since S is positive semi-definite, there exists an eigenvalue decomposition
S = PDP T , where P is orthonormal and D is a diagonal matrix with eigenvalues listed in
descending order. Since P is orthonormal, Pu for any u ∈ Rd with conforming shape can be
replaced with a uniquely determined w ∈ Rd.

uTXXTu = uTSu = uT (PDP T )u = wTDw =
d∑
i=1

λiw
2
i

Note that the constraint ‖u‖2 = 1 translates into ‖w‖2 = 1 since

‖w‖2 = ‖P Tu‖2 = uTPP Tu = uTu = ‖u‖2 = 1

Since λis are listed in descending order, and ‖w‖2 = 1, then
∑d

i=1 λiw
2
i is maximized when

w1 = 1 and all other wi = 0. As a result w∗ = e1 and

u∗ = Pw∗ = Pe1 = u1

where u1 is the first eigenvector. Our direction of maximum variance is u1. How do we find
subsequent principal components? Take X̂i = Xi − (uT1Xi)u1.

uT1 X̂i = uT1Xi − (uT1Xi)u
T
1 u1 = 0

Note that X̂ is centered and orthogonal to u1. To find the direction of maximum variance, we
need the maximum singular value σ1(X̂). Note that this is the second principal component
for our original X, σ2(X), in the direction u2.
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View 2 : Maximizing Likelihood

The second view is fitting a Gaussian model to our data. We will assume the following.

xi = αizi + ωi

In the above, zi, αi are unknown but not random. However, ωi ∼ N(0, σ2Id), α ∈ Rd, z ∈ Rd.
Our goal is to find zi, and our objective is, formally, the following.

Maximizeα,z log p(X;α, z)

= − 1

2σ2

n∑
i=1

‖xi − αizi‖2 +
d

s
log 2πσ2

= σ1u1v
T
1

Note that this is the equivalent of the following, where we chain all of the xi together. We
wish to find the best rank-one matrix that models our data.

Minimizeα,z‖X − zαT‖2F =
k∑
i=1

σiuiv
T
i

Does this uniquely define a z and an α? It doesn’t, because we can scale α by k and z by
k−1. Even if z was constrained to have norm 1, z, α are not unique.

View 3 : Minimizing Projection Error

This is reminiscent of regression: when we run linear regression, the error runs along the
y-axis. For PCA, the error is the minimum distance from the point to the line, making the
error perpendicular to our line. In other words, if our decision boundary is defined by

{wT z = 0} = L(w)
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We have that distance is defined is to be the following. Note that the projection of xi onto w
is projwxi = 〈w,xi〉

〈w,w〉 = wT xi
‖w‖2w. To take the distance to our line, we then consider the magnitude

of the difference between the projection with xi.

Dist(xi, L(w) = ‖xi −
wTxi
‖w‖2

w‖2

As a result, our objective is simply the sum of all these distances to the line. In the first
step, we use (a − b)2 = a2 − 2ab + b2. In the second, we use the fact that wTxi is a scalar
and that xTi w = (wTx)T is the same scalar. In the fourth, we know that w

‖w‖ is a unit vector

and that wT xi
‖w‖ is a scalar.

Minimizew

n∑
i=1

‖xi −
wTxi
‖w‖2

w‖2

=
n∑
i=1

‖xi‖2 − 2xTi
wTxi
‖w‖2

w + ‖w
Txi
‖w‖2

w‖2

=
n∑
i=1

‖xi‖2 − 2
(wTxi)

2

‖w‖2
+ ‖w

Txi
‖w‖2

w‖2

=
n∑
i=1

‖xi‖2 − 2(
wTxi
‖w‖

)2 + ‖w
Txi
‖w‖

w

‖w‖
‖2

=
n∑
i=1

‖xi‖2 − 2(
wTxi
‖w‖

)2 + (
wTxi
‖w‖

)2

=
n∑
i=1

‖xi‖2 − (
wTxi
‖w‖

)2

Since xi are fixed, then ‖xi‖22 are fixed. We can reformulate this as maximization problem,
considering only the second term.
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Maximizew
∑
i

(
wTxi
‖w‖

)2

=

∑
iw

Txix
T
i w

‖w‖2

=
wTXXTw

‖w‖2

= (
w

‖w‖
)TXXT w

‖w‖

w
‖w‖ are unit vectors, so we can consider u ∈ Rd, where ‖u‖2 = 1.

Maximizeu:‖u‖2=1u
TXXTu

Note this objective function is precisely the formulation for PCA.

2 Latent Factor Analysis

In general, factor analysis encompasses variability in a set of observed variables using
a smaller subset of unobserved variables. Latent Factor Analysis or Latent Semantic
Indexing uses PCA to find a low-rank approximation. This allows us to recognize archetypes
and user affinities for archetypes, or relationships between terms and concepts, by applying
dimensionality reduction to a term-document matrix.

Each row is a document and each column is a word, so Xij represents the number of occur-
rences of word j in document i. We see that this term-document matrix X is effectively a
bag-of-words model, representing an unstructured piece of text.

2.1 Applications

1. fuzzy search The reduced-rank X ′ clusters synonyms, by SVD.

2. denoising Reducing dimensionality may improve classification, as it removes noise.
xi = αiz + wi as opposed to x̂i = zTx = α + zTωi. In other words, X may be a
measurement of some low-rank matrix. Thus, the reduced-rank X ′ may be a better
estimator.

3. collaborative filtering LFA may allow us to fill in values (i.e., matrix completion).
Just as X ′ clusters synonyms, it groups users with similar tastes.
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2.2 Relation to SVD

Recall that SVD gives us a decomposition of X = UΣV T , where this can be written entry-
wise as

X =
d∑
i=1

δiuiv
T
i

, where δis are ordered from greatest to least. Consider each δi as a “genre”. ui then tells us
which documents are associated with that genre, and vi tells us which terms are associated
with that genre.

This is a form of clustering, where we notice that similar genres or books see stronger cluster
memberships. However, clusters can overlap, meaning that documents selected by u1 are
not necessarily disjoint from documents selected by u2.

2.3 Relation to PCA

Formally, we’re looking to factor X into ABT . This yields the following objective function.

Minimize(A,B)‖X − ABT‖2F

As it turns out, the solution is A = UrS
1/2
r , B = VrS

1/2
r , where Ur is the r-rank approxi-

mation of U , S is the diagonal matrix with the first r singular values, and V is the r-rank
approximation of V . In this case, we note that ‖A‖F = ‖B‖F . Consider the low-rank ap-
proximation of X, X ′ ∈ Rr×r. Per PCA, we select the r ui, vi with the largest singular values
δi.

X ′ =
r∑
i=1

δiuiv
T
i

X ′ is the rank-r approximation that minimizes the squared Frobenius norm.

‖X −X ′‖2F =
∑
i,j

(Xij −X ′ij)2
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