Singular Vector Decomposition

compiled by Alvin Wan from Professor Benjamin Recht's lecture

1 Introduction to Unsupervised Learning

Note that today, we will consider X to be $d \times n$, contrary to our usual convention for X. We ask ourselves two questions: Can we compress dimension? Can we compress examples?

First, we have a number of ways to achieve dimension reduction (reducing d).

- run time
- storage
- generalization
- interpretability

Second, we have a number of ways to achieve clustering (reducing n).

- faster run time
- understanding archetypes
- outlier removal
- segmentation

Most unsupervised learning appeals to matrix factorization. We will factor $X(d \times n)$ into $A B$, where A is $d \times r$ and B is $r \times n$. Before we explain how this is done, let us consider why this is important. The structure of A and B may give us insight into the data.

We can write X has a linear combination of a_{r}, the examples. Specifically,

$$
X=\left[\begin{array}{ll}
x_{1} & x_{2} \cdots x_{n}
\end{array}\right]\left[P_{1}, P_{2} \cdots P_{n}\right]
$$

where $P_{i}=\left[a_{1}, a_{2} \cdots a_{r}\right]^{T}, \sum a_{i}=1$ and $a_{i} \geq 0$. If we could find this factorization, we would have an archetype.

2 (Economy-Sized) Singular Value Decoomposition

To accomplish matrix factorization, we most commonly consider SVD. Every X in $\mathbb{R}^{d \times n}$, where $n>d$, admits a factorization:

$$
X=U S V^{T}
$$

where U is $d \times d, S$ is $d \times d$, and V is $n \times d$. There are a few properties of this decomposition to take note.

1. We also have that $U^{T} U=I_{d}, V^{T} V=I_{d}$, telling us that U, V contain orthogonal vectors.
2. $S=\operatorname{DIAG}\left(\sigma_{i}\right)$, where singular values are ordered along the diagonal from greatest to least, $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{d} \geq 0$.

We can rewrite $U=\left[u_{1}, u_{2} \cdots u_{d}\right], V=\left[v_{1}, v_{2}, \cdots, v_{d}\right]$ and get the following, equivalent, representation for X.

$$
X=\sum_{i=1}^{d} \sigma_{i} u_{i} v_{i}^{T}
$$

Now that we've rewritten X, what does it mean to multiply X by some vector z ? Like all factorizations, we transform the vector z into a new basis, scale it, and then transform it back into the standard basis. Consider the following.

$$
X z=\sum_{i=1}^{d} \sigma_{i} u_{i}\left(v_{i}^{T} z\right)
$$

Consider the vector z in the standard basis. X, in a sense, transforms z and the unit circle its drawn from into another vector z^{\prime} drawn from an ellipsoid. This allows us to reduce dimensions, because it effectively tells us which directions do not matter.

3 Behavior

We can analyze the behavior of $X z$ for some vector z using the decomposition. First, consider the case where z is some vector drawn from V, v_{i}.

$$
X v_{i}=\sum_{j=1}^{d} \sigma_{j} u_{j}\left(v_{j}^{T} v_{i}\right)=\sigma_{i} u_{i}
$$

Let us take the above result and apply the fact that $V^{T} V=I_{d}$.

$$
X^{T} X v_{i}=X^{T} \sigma_{i} u_{i}=\sigma_{i} X^{T} u_{i}=\sigma_{i}^{2} v_{i}
$$

Every singular value of X is the square root of an eigenvalue of $X^{T} X$ or $X X^{T}$. Likewise, each singular vector of X is the eigenvector of $X^{T} X$ or $X X^{T}$.

$$
\begin{aligned}
& X^{T} X v_{i}=\sigma_{i}^{2} v_{i} \\
& X X^{T} u_{i}=\sigma_{i}^{2} u_{i}
\end{aligned}
$$

This demonstrates existence, but this is not how we compute these values in practice. This is because squaring the matrix X increases the condition number and decreases accuracy. Note that in practice, we use SVD instead of diagonalization, for purposes of stability.

4 Computation

$$
X X^{T}=\left(U S V^{T}\right)\left(V S U^{T}\right)=U S^{2} U^{T}
$$

In the second step, we apply the definition of $V^{T} V=I_{d}$. Likewise, we can obtain

$$
X^{T} X=V S^{2} V^{T}
$$

4.1 Positive, Semi-Definite

A is an positive, semi-definite matrix. This immediately tells us that it has an eigenvalue decomposition and that all of its eigenvalues are non-negative.

$$
A=W \Lambda W^{T}
$$

where $W W^{T}=I, \Lambda=\operatorname{DIAG}\left(\lambda_{i}\right)$, and $\lambda_{i} \geq 0$. How can find W ? We already have. This is identical to SVD, when A is positive, semi-definite.

4.2 Symmetric

B is a symmetric matrix.

$$
B=W_{2} \Lambda_{2} W_{2}^{T}
$$

where $W_{2}^{T} W_{2}=I$ and the first k diagonal entries of Λ_{2} are non-negative but the last $d-k$ are negative, $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \cdots \lambda_{k} \geq 0>\lambda_{k+1} \geq \cdots \geq \lambda_{d}$. Consider γ, a diagonal matrix with k leading 1 s and $d-k-1 \mathrm{~s}$. We know that $\Lambda_{2} \gamma$ is now positive semi-definite since all negative entries are multiplied by -1 . We know that $W_{2} \gamma$ is orthogonal, because $\left(W_{2} \gamma\right)\left(\gamma^{T} W_{2}^{T}\right)=I$, where $\gamma \gamma^{T}=I_{d}$ and per our assumptions, $W_{2} W_{2}^{T}=I_{d}$. So, we have a decomposition.

$$
B=\left(W_{2} \gamma\right) \Lambda\left(W_{2} \gamma\right)^{T}
$$

5 Eigenvalues v. Singular Values

Consider $C=\left[\begin{array}{cc}1 & 10^{12} \\ 0 & 1\end{array}\right]$. The eigenvalues are 1 and the singular values are $10^{12}, 10^{-12}$. To compute singular values, we can use scipy.linalg.svd $\left(C^{T} C\right)$. How are they correlated? For arbitrary square matrices, keep in mind that the singular values and eigenvalues have no correlation.

The maximum value of $\|C z\|$ subject to the constraint that $\|z\|=1$, is σ_{i}. More formally, $\max _{\|z\|=1}\|C z\|=\sigma_{i}$. Here is why.

$$
\begin{aligned}
\|C z\|_{2} & =z^{T} V_{C} S_{C}^{2} V_{C}^{T} z \\
& =\sum_{i=1}^{d} \sigma_{i}^{2}\left(v_{i}^{T} z\right)^{2}
\end{aligned}
$$

v forms a basis for the orthogonal complement of the null space. To maximize this quantity then, we want $z=v_{1}$ so that we yield the largest value, which is the largest singular value.
$\sigma_{r+1}=0 \Longrightarrow \sigma_{r+2}, \sigma_{r+3} \cdots \sigma_{d}=0$ so $\operatorname{rank}(X) \leq r$ and X is rank-deficient. We can write $X=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T} . v_{i}$ are a basis for all $\operatorname{null}(X)$. We also have that u_{i} are a basis for range (X).

$$
\hat{X}=\left[u_{1}, \cdots u_{r}\right]^{T}
$$

What information are we throwing away? Let us rewrite w.

$$
w=\left(\sum_{i=1}^{r} \alpha_{i} u_{i}\right)+W_{\perp}
$$

where $W_{\perp}^{T} u_{i}=0, i=1, \ldots d$.

