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compiled by Alvin Wan from Professor Benjamin Recht’s lecture

1 Introduction to Unsupervised Learning

Note that today, we will consider X to be d × n, contrary to our usual convention for X.
We ask ourselves two questions: Can we compress dimension? Can we compress examples?

First, we have a number of ways to achieve dimension reduction (reducing d).

• run time

• storage

• generalization

• interpretability

Second, we have a number of ways to achieve clustering (reducing n).

• faster run time

• understanding archetypes

• outlier removal

• segmentation

Most unsupervised learning appeals to matrix factorization. We will factor X (d × n) into
AB, where A is d × r and B is r × n. Before we explain how this is done, let us consider
why this is important. The structure of A and B may give us insight into the data.

We can write X has a linear combination of ar, the examples. Specifically,

X =
[
x1 x2 · · ·xn

] [
P1, P2 · · ·Pn

]
where Pi =

[
a1, a2 · · · ar

]T
,
∑
ai = 1 and ai ≥ 0. If we could find this factorization, we

would have an archetype.
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2 (Economy-Sized) Singular Value Decoomposition

To accomplish matrix factorization, we most commonly consider SVD. Every X in Rd×n,
where n > d, admits a factorization:

X = USV T

where U is d×d, S is d×d, and V is n×d. There are a few properties of this decomposition
to take note.

1. We also have that UTU = Id, V
TV = Id, telling us that U, V contain orthogonal

vectors.

2. S = diag(σi), where singular values are ordered along the diagonal from greatest to
least, σ1 ≥ σ2 ≥ · · ·σd ≥ 0.

We can rewrite U =
[
u1, u2 · · ·ud

]
, V =

[
v1, v2, · · · , vd

]
and get the following, equivalent,

representation for X.

X =
d∑

i=1

σiuiv
T
i

Now that we’ve rewritten X, what does it mean to multiply X by some vector z? Like all
factorizations, we transform the vector z into a new basis, scale it, and then transform it
back into the standard basis. Consider the following.

Xz =
d∑

i=1

σiui(v
T
i z)

Consider the vector z in the standard basis. X, in a sense, transforms z and the unit circle
its drawn from into another vector z′ drawn from an ellipsoid. This allows us to reduce
dimensions, because it effectively tells us which directions do not matter.

2



3 Behavior

We can analyze the behavior of Xz for some vector z using the decomposition. First, consider
the case where z is some vector drawn from V , vi.

Xvi =
d∑

j=1

σjuj(v
T
j vi) = σiui

Let us take the above result and apply the fact that V TV = Id.

XTXvi = XTσiui = σiX
Tui = σ2

i vi

Every singular value of X is the square root of an eigenvalue of XTX or XXT . Likewise,
each singular vector of X is the eigenvector of XTX or XXT .

XTXvi = σ2
i vi

XXTui = σ2
i ui

This demonstrates existence, but this is not how we compute these values in practice. This
is because squaring the matrix X increases the condition number and decreases accuracy.
Note that in practice, we use SVD instead of diagonalization, for purposes of stability.

4 Computation

XXT = (USV T )(V SUT ) = US2UT

In the second step, we apply the definition of V TV = Id. Likewise, we can obtain

XTX = V S2V T
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4.1 Positive, Semi-Definite

A is an positive, semi-definite matrix. This immediately tells us that it has an eigenvalue
decomposition and that all of its eigenvalues are non-negative.

A = WΛW T

where WW T = I, Λ = diag(λi), and λi ≥ 0. How can find W? We already have. This is
identical to SVD, when A is positive, semi-definite.

4.2 Symmetric

B is a symmetric matrix.

B = W2Λ2W
T
2

where W T
2 W2 = I and the first k diagonal entries of Λ2 are non-negative but the last d− k

are negative, λ1 ≥ λ2 ≥ λ3 · · ·λk ≥ 0 > λk+1 ≥ · · · ≥ λd. Consider γ, a diagonal matrix with
k leading 1s and d−k -1s. We know that Λ2γ is now positive semi-definite since all negative
entries are multiplied by -1. We know that W2γ is orthogonal, because (W2γ)(γTW T

2 ) = I,
where γγT = Id and per our assumptions, W2W

T
2 = Id. So, we have a decomposition.

B = (W2γ)Λ(W2γ)T

5 Eigenvalues v. Singular Values

Consider C =

[
1 1012

0 1

]
. The eigenvalues are 1 and the singular values are 1012, 10−12. To

compute singular values, we can use scipy.linalg.svd(CTC). How are they correlated?
For arbitrary square matrices, keep in mind that the singular values and eigenvalues have
no correlation.
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The maximum value of ‖Cz‖ subject to the constraint that ‖z‖ = 1, is σi. More formally,
max‖z‖=1‖Cz‖ = σi. Here is why.

‖Cz‖2 = zTVCS
2
CV

T
C z

=
d∑

i=1

σ2
i (vTi z)2

v forms a basis for the orthogonal complement of the null space. To maximize this quantity
then, we want z = v1 so that we yield the largest value, which is the largest singular value.

σr+1 = 0 =⇒ σr+2, σr+3 · · ·σd = 0 so rank(X) ≤ r and X is rank-deficient. We can
write X =

∑r
i=1 σiuiv

T
i . vi are a basis for all null(X). We also have that ui are a basis for

range(X).

X̂ =
[
u1, · · ·ur

]T
What information are we throwing away? Let us rewrite w.

w = (
r∑

i=1

αiui) +W⊥

where W T
⊥ui = 0, i = 1, . . . d.
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